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Abstract—This paper illustrates a 10-year research endeavor
on collective learning, a paradigm for tackling tragedy of the com-
mons problems in socio-technical systems using human-centered
distributed intelligence. In contrast to mainstream centralized
artificial intelligence (AI) allowing algorithmic discrimination
and manipulative nudging, the decentralized approach of col-
lective learning is by-design participatory and value-sensitive: it
aligns with privacy, autonomy, fairness and democratic values.
Engineering such values in a socio-technical system results in
computational constraints that turn collective decision-making
into complex combinatorial NP-hard problems. These are the
problems that collective learning and the EPOS research project
tackles. Collective learning finds striking applicability in en-
ergy, traffic, supply-chain and the self-management of sharing
economies. This grand applicability and the social impact are
demonstrated in this paper along with a future perspective of
the collective learning paradigm.
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I. INTRODUCTION

The pervasiveness of artificial intelligence (AI) in society
has brought unprecedented technological opportunities, which
though come along with risks on human, social and democratic
values [1]. Alternative learning approaches are required that
would pass new kind of Turing tests about human values such
as privacy, non-discriminatory decisions that are fair and free
from manipulative nudging, while remaining decentralized and
participatory by-design to prevent power concentration and
serve as public good. A human-centered distributed AI co-
evolving along with human collective intelligence and human
values is the vision behind ambitious research on the paradigm
of collective learning that is the subject of this paper.

Collective learning is a human-centered and fully decentral-
ized approach for coordinated multi-objective decision-making
in socio-technical multi-agent systems. It is an approach that
contributes solutions to tragedy of the commons problems [2]
without top-down regulation using digital means. More specif-
ically, it computationally solves a large class of combinatorial
NP-hard optimization problems as a result of constraints in-
troduced to preserve human values such as privacy, autonomy
and fairness. EPOS [3], [4], [5], the Economic Planning and
Optimized Selections, is the project under which research on
collective learning has been conducted the last 10 years. Its
main artifact is the I-EPOS algorithm, a highly cost-effective
and general-purpose method to perform collective learning in

a large spectrum of load-balancing applications scenarios of
socio-technical systems: energy, traffic, bike sharing, electric
vehicles, fog computing as well as a new application portfolio
introduced in this paper.

Figure 1. Word cloud of 17 publication abstracts on collective learning with
the following frequent keywords: decentralized, learning, smart, agents.

A plenary view of collective learning research conducted in
the last 10 years (see Figure 1) is introduced in this paper to
demonstrate the full potential and impact of this alternative
approach. This paper also illustrates a future perspective and
open research questions on collective learning to motivate
further research on human-centered distributed intelligence.
Moreover, this paper illustrates an MSc course on self-
organizing multi-agent systems designed and taught through
the prism of collective learning. Strikingly, by introducing a
modeling guideline to foster creativity and innovation, students
managed to incept and build a novel portfolio of application
scenarios with systematic evaluations taught in the class. This
confirms the feasibility of collective learning as a promising
paradigm of human-centered artificial intelligence.

The contributions of this paper are summarized as follows:
(i) A plenary view on collective learning research conducted
the last 10 years with the key milestones. (ii) An educational
approach on collective learning derived by hands-on experi-
ence in designing an MSc course. (iii) A novel application
portfolio as a result of a modeling guideline [6] introduced
to foster students’ creativity, innovation, while assessing the
feasibility of collective learning as an AI paradigm. (iv) A list
of future research opportunities and open research questions.

This paper is summarized as follows: Section II discusses
and compares related theories and paradigms. Section III



outlines the human-centered collective learning approach.
Section IV reviews the research developments on collective
learning the last 10 years and identifies the key milestones.
Section V introduces the design of an MSc course via which
the feasibility of collective learning as an AI paradigm is
evaluated. Section VI illustrates a novel application portfolio,
the modeling decisions of students, performance results and
an overall evaluation of the designed MSc course. Section VII
introduces a future perspective of open research challenges
on collective learning and human-centered distributed intelli-
gence. Finally, Section VIII concludes this paper.

II. RELATED WORK

Collective learning [7] is a broadly defined, complex and
highly inter-disciplinary concept [8]. It usually refers to the
production of knowledge as an emergent result of dynamic
and evolutionary interactive processes in which information is
shared between the elements of a socio-technical system, i.e.
humans and software agents.

Several manifestations of collective learning appear in artifi-
cial intelligence literature. The concept initially appears in the
theory of collective learning systems [9]. This theory studies
statistical reinforcement learning agents referred to as collec-
tive learning automatons. They learn appropriate responses
for each environmental stimulus by choosing responses until
one of them emerges as statistically optimal [10]. While this
theory envisioned fully networked automatons, earlier research
is limited to the learning of individual automatons [11]. The
area of autonomic computing followed with a significant con-
tributions on modeling further the complexity and interactions
of such intelligent agents with their environment [12], [13].

More recently, collaborative interactive learning focuses
on human and social aspects of learning processes [14]. It
studies the interplay of machine-machine, human-machine and
human-human collaboration, for instance, providing higher-
quality and up-to-date labeling of data for training in super-
vised learning. In contrast, the collective learning paradigm
illustrated in this paper is mainly unsupervised and focuses on
artificial and human collective intelligence as a result of decen-
tralized interactions. Federated learning [15] is a distributed
machine learning paradigm for training models with local data
across multiple edge devices. Distributed computing principles
are applied to move learning models to data, instead of data to
models as in mainstream centralized machine learning. This
paradigm inherits desired properties such as privacy by-design
and personalization. However, federated learning does not
necessarily determine an alternative design for more human-
centered or value-sensitive learning models.

In the last decade, a few collective learning approaches
for coordination problems are studied. For instance, an incre-
mental social learning framework is applied to decentralized
decision-making problems in which agents’ choices create
interference. Coordination is achieved by controlling the pop-
ulation of agents and orchestrating the learning process as the
population grows [16]. Collective learning is also studied in
the context of norms and their emergence in different agents’

interaction scenarios [17], [18]. Reinforcement learning shows
applicability to distributed coordination problems in robotics
and traffic control [19], [20], yet most of such methods
focus on supervised learning with limited scalability [21]. The
theory of probability collectives involves agents that learn the
probability distribution of selecting a particular action that
maximizes both local and global utility [22]. It lies its foun-
dations in game theory, statistical physics and optimization.

Recent methods for human-centered AI focus on the in-
volvement of policy-makers to mitigate undesirable biases and
regulate trade-offs between model accuracy and fairness [23].
Explainability models based on contrastive explanations with-
out external assistance are also studied. They allow policy-
makers to directly answer what-if questions [24]. Autonomous
vehicles are also subject of active research on human-centered
artificial intelligence. For instance, a value-sensitive design ap-
proach for secure, fair, legal and respectful automated vehicle
speed control is recently introduced. Optimal policies are com-
puted based on a partially observable Markov decision process
and dynamic programming [25]. Despite this progress, the
applicability of such human-centered AI approaches to more
decentralized learning systems remains an open challenge.

III. HUMAN-CENTERED COLLECTIVE LEARNING

The socio-technical computational problems of collective
learning research conducted the last 10 years and outlined
in this paper fall in the class of decentralized multi-agent
combinatorial optimization as a result of a human-centered de-
sign. In these computational problems, humans autonomously
decide about the consumption and production of some shared
resources such as energy. It is known that such individuals’
decisions driven by their own self-interests often result in
tragedy of the commons [2], a situation in which independent
decisions oppose common good and result in depletion of
shared resources or, in general, an inefficient utilization of
resources. Traffic jams, power blackouts and any undesirable
load-imbalance in socio-technical systems is often a result of
some tragedy of the commons problem.

To improve the outcome of collective human decisions,
software agents are introduced for decision-support. In practice
such agents can be a personal digital assistant in a smart phone,
a home energy management system, a vehicle navigation
system or any other digital twin of a human. The advantage
of such agents is the automation, efficiency and facilitation
of complex coordination actions required between humans to
prevent tragedy of the commons. However, for humans to
trust such software agents, their solutions should be superior
to existing top-down regulation, market-based and economic
mechanisms that often result in inequalities and concentra-
tion of power. Their design should also be human-centered
and value-sensitive [26] to minimize risks such as sacrifice
of autonomy over automation, privacy violation, algorithmic
discrimination as well as manipulative nudging.

To make this possible, a number of critical system design
constraints and choices are introduced. The multi-agent system



is designed as a fully decentralized one, no agent has full in-
formation or control over other agents. Coordination of human
decisions requires flexibility, meaning a finite number of self-
determined discrete options to choose from. These options are
referred to as possible plans. Each plan is a sequence of real
values that schedule resources over time or allocate resources
over consumers and producers. Such plans can be generated
with the assistance of software agents that can computationally
generate such feasible plans for humans, e.g. reasoning based
on past behavior and satisfying current human goals [27],
[28]. A human may treat the plans as equivalent without
preferences in the plan selection or may have preferences
measured locally by a discomfort cost. Having multiple plans
to choose is a form of operational flexibility crowdsourced
by humans to agents for improving coordination efficiency
and fairness measured system-wide by an inefficiency and
unfairness cost. Inefficiency cost refers to the load-balancing
of the scheduled or allocated total resources in the system.
Unfairness cost is the dispersion of discomfort cost among the
agents. For instance, consumers aim at having thermal comfort
during cold winters (low discomfort cost), while their energy
management system may require coordination of the power
demand to prevent a blackout (low inefficiency cost) and make
sure that consumers experience equal comfort (low unfairness
cost). As a result of bringing together different human values
in collective decision-making, plan selection is formalized as
a socio-technical multi-objective optimization problem:

s =
ki

argmin
j=1

(γi · Ii,j + βi ·Di,j + αi · Ui,j), (1)

subject to αi + βi + γi = 1 and αi, βi, γi ∈ [0, 1], (2)

Ii,j = fI(pi,j ,

n∑
u=1

pu,s), (3)

Di,j = fD(pi,j), (4)

Ui,j = fU(pi,j ,

n∑
u=1

Du,s,

n∑
u=1

(Du,s)
2). (5)

The selected plan pi,s of agent i is among its ki possible plans
s ∈ {1, .., ki} and the one that minimizes the inefficiency
Ii,j , discomfort Di,j and unfairness Ui,j cost. The parameters
αi, βi, γi model the individual behavior of the agent. For
αi = 0, βi = 0, γi = 1, the agent represents an altru-
istic individual, who prioritizes for system-wide efficiency,
whereas, αi = 0, βi = 1, γi = 0 represents a selfish individual,
who prioritizes comfort. For αi > 0, the agent also employs
fairness criteria in its plan selection.

Among the cost functions in Equation 3-5, the ones for
inefficiency and unfairness are evaluated system-wide ∀u ∈
{1, ..., n}: using aggregate plan selections of all n agents
summed up element-wise (Equation 3) as well as the sum
of the discomfort cost and its sum of squares among all
n agents (Equation 5) respectively. The selection of the
optimum combination of plans is a combinatorial NP-hard
optimization problem [5]. This is a result of a human-centered
design: (i) Agent choices are made among discrete options

self-determined by humans. (ii) Human values represented
in system-wide objectives are evaluated by non-linear cost
functions. While linear cost functions can be optimized locally,
e.g. choosing the plan with the minimum energy consumption
minimizes the total energy consumption, quadratic and other
more complex cost functions require coordination as each
agent’s choice depends on all other agents’ choices [5],
e.g. choosing the plan with the minimum variance does
not minimize the variance of the total energy consumption
(peak shaving). Such coordination is required for balancing
(minimizing the variance of the aggregated plan selections)
and matching (minimizing the root mean square error between
the aggregated plan selections and a goal signal) objectives.

A practical, yet general-purpose, cost-effective, human-
centered and decentralized approach to solve such challenging
computational problems in a broad spectrum of applications
motivates the research on collective learning in the last decade.
The core artifact of this research is the I-EPOS learning algo-
rithm, the Iterative Economic Planning and Optimized Selec-
tions [5]. I-EPOS solves the following problem in Equation 1-
5: Plan selection is augmented by making locally available
to each agent the aggregated plan selections of other agents.
Based on this collective information, a more informed plan
selection is made that coordinates with the choices of other
agents, while incrementally improving earlier plan choices.

The collective learning algorithm works as follows: Agents
are self-organized in a connected acyclic undirected graph,
i.e. a tree, based on which they structure their learning
interactions. Trees are known for their efficient aggregation
of information and decision-making and as a result collective
learning can be designed without redundant communication.
Solid methods for building and maintaining tree structures
in distributed environments exist [29], [30]. Each learning
iteration consists of a bottom-up and a top-down phase as il-
lustrated in Figure 2. The bottom-up phase aggregates the plan
selections performed level-by-level in the tree that become
coordination input to the agents of the next level above. Agents
have a minimal memory of the plan selections made in the pre-
vious iteration. As a result, they can make new plan selections
that lower further the cost of Equation 1. In this phase, the
agents experience the information gap of not having available
the plan selections of the agents above them. To guarantee
monotonic improving solutions across the learning iterations
and prevent falling into worse solutions when the bottom-
up phase completes at the root, the agents initiate a top-
down phase. During this phase each agent assesses whether
itself and the agents below should switch back to the plan
selections of the previous learning iteration letting the agents
above contributing any potential improvement. With this back-
propagation mechanism, agents achieve a continuous self-
improvement until they find the optimal solution or they are
trapped in a local minima. Strikingly earlier optimality results
confirm the top 3% solution discovery under a monotonically
decreasing inefficiency cost [5], [31]. I-EPOS also shows
superior cost-effectiveness compared to related combinatorial
optimization approaches [32]. A detailed illustration of the



algorithm and its complexity can be found in earlier work [5].

(a) Collective learning

(b) Bottom-up coordination phase (c) Top-down coordination phase

Figure 2. Visual outline of collective learning and coordination in I-EPOS.
(a) Each learning iteration consists of a peer-to-peer exchange of collective
information between children-parent (bottom-up phase) and parent-children
(top-down phase). This collective information augments the plan selection, see
Equation 3 and 5. An agent coordinates based on: (b) The earlier aggregate
plan selections of all agents (Step 5 at t−1) and the aggregate plan selection
updates of the agents below (Step 2 at t and Step 3 at t−1). (c) The aggregate
plan selection updates of all agents (Step 5 at t and t− 1).

All learning interactions between agents rely on the ex-
change of aggregate plans, i.e. selected plans summed up
element-wise. Agents do not share their possible plans to
preserve privacy. They also do not delegate their decisions
to other agents. Note also that the agent behavioral weights
in Equation 1 are self-determined by the human to preserve
autonomy. In other words, the design of the collective learning
algorithm is also human-centered and satisfies the problem
constraints that stem from the value-sensitive requirements
of the multi-agent system. All these novel features together
with the superior learning performance and versatile real-world
applicability is what distinguishes and sets this work apart
from other learning approaches in artificial intelligence.

IV. RESEARCH EVOLUTION AND MILESTONES

Figure 3 illustrates the research timeline of collective learn-
ing during the last decade. This body of work consists of
17 papers [6] with 28 coauthors from 12 different institutes
(including an industry partner) as well as a PhD thesis that
incepted the first concept [29]. Three related MSc theses are
written and a novel MSc course is designed on the topic (see
Section V). Other researchers have studied the concept of
collective learning and the EPOS project beyond the author’s
involvement [32]. This research has also produced open-
source code and artifacts [4], [33], [34], documentation and
tutorials [35], [34], [6] as well as open data [36], [37].

The progress during these 10 years can be grouped into the
following six milestones: (i) Initial inception (2010-2013). (ii)
Socio-technical human-centered approach (2014-now). (iii)
From distributed optimization to collective learning (2017-
2018). (iv) Generalized applicability (2017-now). (v) The role

of structure in collective learning (2019-2020). (vi) Collective
learning as a robust live service (2020).

The initial inception during the author’s PhD studies in-
volved a single objective (inefficiency cost), a bottom-up de-
centralized optimization approach without learning iterations
and a single application domain (energy) [29].

The socio-technical human-centered approach involved the
study of trade-offs between efficiency, comfort and fairness.
The latter two were not yet part of the optimization process
and they are simply measured. Different cost functions are
incepted for the domain of energy to regulate the trade-offs at
the design phase [28] rather endogenously via the optimization
process. Different planning mechanisms are introduced and
their role in optimization performance is established [27].

The simplicity of the initial distributed optimization concept
and some early insights on observed emergent behavior (see
the reverse deviations cost function [29]) motivated further
experimentation and impactful design improvements that re-
sulted in the I-EPOS algorithm [5]. The optimality, complexity
and scalability of collective learning are profiled in depth [5].

Along with the introduction of collective learning, the
applicability of this research expanded significantly beyond
energy [5]. This expansion continues with new disruptive ap-
plication scenarios: sharing economies (bike sharing), charging
control of electric vehicles [38], traffic flow optimization [39],
edge-to-cloud load-balancing and even an art project about the
sonification of collective learning as an alternative means for
general public to conceive such complex systems.

Several new insights are gained by studying the role of
structure in collective learning: agents’ placements in the tree
structure that improve efficiency are determined as well as the
most effective plan features based on which such placements
can be made [31]. New large-scale optimality benchmarks
are also introduced [31], [37]. Furthermore, the resilience of
collective learning in distributed environments with uncertain-
ties is studied, with findings showing that localizing collective
learning in clustered branches as a result of agent failures can
mitigate and even often boost the learning performance, i.e.
exploration by structural adaptation [40].

Last but not least, recent software engineer developments
result in turning I-EPOS to a live collective learning service
of high Technology Readiness Level (TRL 6).

V. COLLECTIVE LEARNING AS AN AI PARADIGM?

Collective learning is mainly an incremental research effort
and built experience of the author and his collaboration
network. The question that arises is to what extent collective
learning can be applied to a broader context and independently
by diverse individuals as a standardized practice to solve
computational learning problems in different application do-
mains. In other words, this paper aspires to study the potential
of collective learning to stand as a paradigm of artificial
intelligence. The following hypothesis is formulated:

Hypothesis 1. Collective learning is a feasible paradigm of
artificial intelligence.



Figure 3. The research timeline of collective learning and the EPOS project in the last 10 years (2010-2020).



Applying theoretical models [41] that predict the emergence
and adoption of such paradigms is not feasible without data
that model several economic, political, social and business
factors [42]. Instead, this paper introduces a simple, yet,
pragmatic and empirical approach to study systematically
Hypothesis 1: The independent applicability of collective
learning by students in a university class. The limitation of
this approach is that the necessary conditions observed in such
a class and used for the acceptance or refute of the hypothesis
cannot confirm a universal paradigm establishment but only
its potential as illustrated below.

A new MSc course is designed and taught during the autumn
semester of 2018 at ETH Zurich entitled “Self-organizing
Multi-agent Systems” [43]. The course had a highly inter-
disciplinary affinity in the university curriculum given that
it ran by the Chair of Computational Social Science [44] in
the department of Humanities, Social and Political Sciences.
It hosted 29 students from different disciplines, including
Robotics, System and Control, Informatics, Mechanical En-
gineer, Physics and other. Collective learning has been a
central focus and subject of this course. More specifically,
it was used as a educational artifact to teach and understand
decentralized multi-agent systems according to the costruc-
tivism and transformative learning theory [45]. Topics such
as agents’ actions, goals, autonomy, altruistic vs. selfish be-
havior as well as the more complex concepts of coordination,
combinatorial optimization and learning were introduced using
problem formulations and modeling concepts of collective
learning. The course though covered several other concepts
beyond collective learning, for instance, autonomic computing,
reinforcement learning, game theory and other. Moreover, the
course relied extensively on use cases and application sce-
narios including traffic, energy, pedestrian dynamics, sharing
economies and other. Finally, the course provided practical
tutorials [35] on the EPOS software artifact [5], [4].

For the assessment for this course, students had to “design,
prototype, evaluate and present an application scenario of a
distributed multi-agent system” that performs collective learn-
ing. In other words, the students had to actually incept a new
application scenario of a multi-agent system that solves a de-
centralized combinatorial problem according to the modeling
approach of collective learning. Students worked in teams of
maximum of 3 people. They were given full freedom to select
and model themselves the application scenario, the dataset, the
optimization problem, the cost functions, the plan generation
techniques and all other design features of collective learning
and its application scenario. There was neither a predefined
list of application scenarios to choose from nor a list of
datasets. Undoubtedly, coping with this degree of freedom at
an educational-level poses a significant challenge for students,
comparable to incepting and pursuing novel research such as
the one conducted for the decentralized charging control of
electric vehicles [38]. This approach though can provide the
necessary conditions to accept or refute the Hypothesis 1:
the level of the students’ understanding on the material, the
knowledge applicability during such challenging assignments

as well as their overall creativity and innovation on their
projects can be used as indicators to assess the feasibility
of collective learning as a paradigm of artificial intelligence.
These conditions are observed in three incremental assign-
ments that students had to deliver during the semester. Such
assignments kept students focused and exposed with learning
activities throughout the semester, while having the chance to
receive feedback for improvements and track their progress.

For the first assignment (40% of the grade) delivered by
the middle of the semester (28.10.2018), students are given
a modeling guideline [6] with six concepts to realize in an
application domain of their choice: (i) Agents: Determine
which physical and/or virtual actor, i.e. end users or other
stakeholders, are involved in the selected application scenario.
(ii) Resources: Determine which resources are managed by
the agents and the system as a whole. (iii) Agents’ plans: De-
termine how agents can generate multiple options to manage
their resources, meaning scheduling or allocating the consump-
tion/production of resources. (iv) Local agents’ objectives:
Determine criteria with which agents have preferences over
their generated plans (discomfort cost function). (v) Global
system-wide objectives: Determine the system-wide objectives,
which the agents need to collectively satisfy (inefficiency and
unfairness cost functions). (vi) Agents’ behavior: Determine
the priority of the agent over the global vs. local objectives.

These concepts are covered in depth during the lectures
along with three application scenarios as inspiring examples
of how such a guideline could be realized: (i) energy, (ii)
bike sharing and (iii) electric vehicles. These three scenarios
together have an education value due to their modeling diver-
sity: The application scenarios on energy and electric vehicles
rely of schedules, while the bike sharing scenario relies on
resource allocation. All scenarios have very different models
to generate possible plans and their costs using historic data
and algorithms, e.g. plan discomfort is modeled by shifting
the power demand over time, whereas for the electric vehicles
scenario by the likelihood of vehicle usage during charging.

For the second assignment (40% of the grade), three deliver-
ables were expected by the end of the semester (5.12.2018): (i)
evaluation report, (ii) dataset of plans and (iii) plan generation
code. The evaluation report contains the following: (i) Analysis
of the generated plans – number, values and cost of plans
among the agents. (ii) The System evaluation – inefficiency
cost reduction compared to baselines. (iii) Socio-technical
evaluation – varying the agents’ behavior. Such evaluations
are introduced during the lectures and they cover the three
taught application scenarios. The third assignment (20% of
the grade) is the presentation and defense of the project to the
lecturers and classmates (10.12.2020 and 17.12.2020).

VI. APPLICATION PORTFOLIO: CREATIVITY–INNOVATION

Students delivered a novel application portfolio of 11
projects. One project did not yield convincing results with
questionable modeling choices. All other 10 projects com-
pleted successfully with an average grade of 5.4/6.0 (σ = 0.46)
among the three assignments. The satisfaction level on the



lectures was on 72%, while a satisfaction level of 82% is mea-
sured on how interesting the learning material was according
to official university evaluations (available upon request).

It is worth scrutinizing further the students’ projects to
demonstrate the significant modeling capacity of collective
learning to solve real-world practical problems. Out of the
10 successful projects, 4 of them are variations of traffic and
public transport optimization and as a result only one of these
four is demonstrated here. In total, an application portfolio of
collective learning with 6 new application scenarios is shown
in Table I among with the three application scenarios taught
to students during the semester for a comparison. The table
outlines the modeling choices that students made as well as
the prototyping and experimental choices for the evaluations.

The project on libraries studies how students can col-
lectively choose the times and libraries to study to avoid
overcrowded spaces and noise. This can be particularly critical
in times such as pandemic lockdowns to minimize the risk
of infections. The evacuation project studies how coordinated
selections of evacuation points reduce traffic congestion and
evacuation times (see Figure 4). The parking project studies
the load-balancing of available parking spots in a city. The
food supply project load-balances the times, the restaurants
and the dishes that students select to reduce food waste.
The traffic project introduces a load-balance of traffic flow
that considers the travel time, the waiting time as well as
the cost of fuel and tolls. In the manufacturing project, the
different manufacturing elements coordinate the scheduling
and allocation of the machines to minimize manufacturing
duration. Finally, the Airbnb project introduces a price and
occupancy coordination scheme for the allocation of guests to
apartments to alleviate overcrowded urban spots (see Figure 5).

(a) Congested evacuation: 45 steps (b) Optimized evacuation: 13 steps

Figure 4. Snapshot [53] on the 5th step of the MATSim simulation [54].

Strikingly, all six applications scenarios are novel, highly
diverse among each other and different than the ones taught
in the class. There a few key observations about these projects:
(i) High experimental variability: Number of agents–from
27 (manufacturing) to 4000 (traffic). Number of plans–from
16 (traffic) to ≤3600 (manufacturing). Plans size: from 36
(parking) to 480 (libraries). (ii) The traffic and the evacuation
projects introduce a novel data-driven integration of EPOS
with the SUMO [55] and MATSim [54] simulation tools. (iii)
The food supply project involves a novel data collection about

(a) Baseline overcrowded allocation (b) Balanced allocation

Figure 5. Allocation of guests to Airbnb apartments in Mallorca. Yellow
dots size is proportional to the number of hosted guests.

the time and dish choices that students make at university
restaurants. (iv) The manufacturing and Airbnb projects follow
a different approach to modeling agents, i.e. the agents are
modeled by the manufacturing elements and the apartments
instead of machines and apartment guests respectively. An
open research question is to what extent such modeling choices
influence the learning performance.

The datasets and the software code of the students’ projects
are used here to run new experiments with the following
settings: each experiment is the result of 40 learning iterations
and each experiment is repeated 50 times with a random
assignment of the agents over a balanced binary tree topology.
For each application scenario, the designed experiments run
for altruistic (α = 0, β = 0, γ = 1) and selfish (α =
0, β = 1, γ = 0) agents. The three performance indicators of
Equation 1 are measured at each experiment: (i) inefficiency,
(ii) discomfort and (iii) unfairness. Each one is contextualized
as shown in Table I. Figure 6 illustrates the performance of
collective learning at each application scenario.

The results demonstrate the following: (i) All application
scenarios achieve reduction in inefficiency in exchange of a
discomfort increase for altruistic agents. (ii) The application
scenario of libraries and evacuation show the highest relative
inefficiency reduction for altruistic agents (but also a sig-
nificant increase in discomfort cost). (iii) Fairness increases
by altruistic agents compared to selfish agents, however, a
common lower bound in the discomfort cost among the agents
results is the minimum unfairness of 0 for energy and libraries.

In conclusion, there are strong indicators to accept Hy-
pothesis 1: Students with diverse background managed to
independently incept and model effectively novel application
scenarios of collective learning. Students’ success stem from
following the modeling and evaluation guideline as well as
their continuous learning exposure during the semester. As
a result they achieved very high grades although they found
the course demanding, yet interesting and valuable. Several
students’ projects have (publishable) scientific value and could
also be the basis for new business model and entrepreneurship
endeavors. Such an outcome exceeds by far the initial expec-
tations: It sets foundations for a more universal impact by
repeating the course with new experience, running hackathons
as well as reaching out entrepreneurs and experienced prac-
titioners in industry. This effort settles a blueprint towards a
more universal adoption and paradigm shift.



Table I
APPLICATION PORTFOLIO OF COLLECTIVE LEARNING: MODELING CHOICES (TOP) AND PROTOTYPING (BOTTOM) OF A BROAD SPECTRUM OF

APPLICATION SCENARIOS. THE FIRST THREE OF THESE SCENARIOS ARE BASED ON THE TAUGHT MATERIAL AND THE EXISTING RESEARCH OUTCOME,
WHILE THE REST OF THE APPLICATION SCENARIOS ARE INCEPTED BY STUDENTS ACCORDING TO THE INTRODUCED GUIDE.

Load-balancing Scenario Modeling Collective Learning

Agent Representation Plans Inefficiency Cost Function Discomfort Cost Function

Energy [5] Household (energy management system) Energy demand over time Residual of sum squares Shifting discomfort
Bike Sharing [5] Cyclist (app) Use of bike stations Variance Likelihood of station usage
Electric Vehicles [38] Driver (charge controller) Energy charging demand over time Root mean square error Likelihood of vehicle usage

Libraries Student (app) Utilization of study places over time & libraries Variance Shifting discomfort & library distance
Evacuation Citizen (app) Use of evacuation nodes Root mean square error Dijkstra’s distance
Parking Driver (navigation system/app) Use of parking spots Variance Shortest distance (Bee line)
Food Supply Student (app) Dish, restaurant & eating time Residual of sum squares Dish price, dish desire & waiting time
Traffic Driver (navigation system/app) Use of road Variance Travel & waiting time, fuel & toll cost
Manufacturing Manufacturing element Use of machines over time Residual of sum squares Completion time / deadline
Airbnb Airbnb apartment Guests, price & occupancy Root mean square error Price, occupancy & occupancy type

Load-balancing Scenario Prototyping & Experimental Choices

Num. of Agents Num. of Plans Plans Size Plans Generation Dataset Goal Signal

Energy [5] 1000 10 144 Shifting PNW [36] 3– Ramp down generation [27]
Bike Sharing [5] 1000 23 98 Past choices Hubway Data Visualization Challenge Paris [36] 7
Electric Vehicles [38] 2779 4 1440 Multiple charging slots California Household Travel Survey [36] 3– Price signals

Libraries 500 30 480 Shifting & multiple libraries Library Navigator [46] 7
Evacuation 961 65 65 Roads crossing evacuation boundary OpenBerlin for MATSim [47] 3– Capacity of exit nodes (vehicles/hour)
Parking 166 36 36 Parking options Parking Guidance System of Zurich [48] 7
Food Supply 926 ≤ 288 288 Arrive times, dishes & restaurants Collected & ETH Zurich [49], [50] 3– Num. of available dishes (scaled)
Traffic 4000 16 360 Top-k routes with min discomfort cost Grid of 10x10 in SUMO [51] 7
Manufacturing 27 ≤ 3600 450 Possible manufacturing times & machines Synthetic factory & machine catalogue 3– Synthetic
AirBnb 100 55 300 Guests & price Inside Airbnb Malloca [52], 3– Density & type of available apartments
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Figure 6. Performance of altruistic agents that coordinate their choices via collective learning to optimize system-wide goals of different application scenarios,
as shown in Table I. The relative inefficiency cost reduction and discomfort cost increase are calculated between the altruistic and selfish agents (baseline).

VII. FUTURE PERSPECTIVE & RESEARCH

This section outlines a future perspective and open research
questions on collective learning.

A. Explainability and trust

Explaining and interpreting the outcomes of collective learn-
ing is challenging [56]. In particular, explainability requires
dissecting the complexity of emergent behavior that decen-
tralized systems exhibit. It may not always be intuitive to
humans how a certain selected plan serves the global and local
objectives due to the combinatorial nature of the computational
problem [57]. Moreover, different levels of explainability are
required: (i) System-level explainability can support system
operators, policy-makers and designers to understand, tune
and steer collective decisions. (ii) Agent-level explainability
that can empower trust of humans to collective learning. The
former may depend on the latter and vice versa. Distributed
ledgers designed to empower trust without central control are
a promising approach in this context [58].

B. Learning resilience against plan violations & adversaries

Planning uncertainties may result in violations during plan
execution, i.e. planned actions may fail. Such violations inval-
idate the solutions of collective learning in combinatorial opti-
mization problems. Initiating a new learning process for each
plan violation can hinder performance by adding up significant
communication and processing overhead as well as latency. If
such latency expands over the planning horizon, the learning
process becomes impractical. Having the option to seamlessly
roll forward to another comparable solution by influencing a
minimum number of other agents is a self-adaptation that can
make collective learning more resilient [59]. Pre-computing
such backup solutions before violations happen or acquiring
them efficiently on-demand after they occur are possible
approaches to build up such resilience [60].

Given the sensitivity of the learning solution to every agent’s
choice, adversaries may heavily disdord the coordination
process. For instance, assume free rider agents that persist
to selfish behavior. Or agents selecting plans that maximize



the inefficiency cost or even agents that arbitrary violate the
execution of their selected plans. Making collective learning
tolerant to Byzantine faults may require methods to identify
and isolate such agents or novel collective actions by other
agents to remedy the effect of adversary behavior [61].

C. Organic collective learning in systems-of-systems

Complex systems such as power grids can perform col-
lective learning at multiple nested encapsulated levels corre-
sponding to consumers, aggregators, power utilities, producers,
etc. The solution of a subsystem can form the goal signal
of another subsystem above or below creating a holarchic
and federated system-of-systems [62]. Via such an approach,
agents can co-evolve their objectives in an organic way [63],
[64] by self-adapting their cost functions. Moreover, preserv-
ing decentralization and the cost-effectiveness of collective
learning in unstructured networks is a challenge to tackle [32].

D. Co-evolving human and artificial collective learning

A co-evolving and augmented collective intelligence can
emerge by mutual decision-support of collective actions be-
tween human and software agent populations [65]. For in-
stance, to what extent is it possible to optimize via collective
learning the working hours of employees, who travel to
work with electric vehicles and also coordinate their charging
control via collective learning? Can new norms and culture for
flexible working hours and energy sustainability emerge as a
result of such coupled and augmented learning processes?

E. An opportunity for digital democracy?

Existing majority voting mechanisms often fail to achieve
fair outcomes, consensus and social cohesion. They relate
to low citizens’ participation, poor inclusion and legitimacy,
‘tyranny of the majority’ effects and rise of populism [66],
[67]. Multi-option preferential voting is an alternative to better
promote consensus and inclusion. Such model shares common
features with the operational flexibility model of collective
learning. What if intelligent and transparent methods such as
collective learning are used for governance, participatory and
direct democracy scenarios in which citizens collectively de-
cide for a broad spectrum of complex topics without delegating
decisions to representatives? As radical as it sounds in the
current status quo, scientific progress in these emerging areas
makes more plausible such alternatives.

VIII. CONCLUSION

This paper concludes that collective learning is a feasible
and promising paradigm of a human-centered distributed intel-
ligence. This is demonstrated by several significant milestones
reached during the last 10 years as well as the novel applica-
tion portfolio incepted by students in an MSc course designed
to foster modeling creativity and innovation. Nevertheless, a
further involvement of industry and public sector as well as a
community building promise a more universal establishment of
the paradigm for tackling some of the grand future challenges
outlined in this paper.
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