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4  Design Solution 
 

Information dissemination: gossiping 

Distributed memory: Bloom filters 

Fault-tolerance: agent migration 
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(a) Simulation, UP-DOWN (b) Simulation, DOWN-UP

(c) Live, UP-DOWN (d) Live, DOWN-UP

Figure 3. Number of aggregators over runtime for the three scaling strategies.

they approximate the original designed demand profiles of
Figure 3a and 3b.

Figure 4a illustrates in detail the accuracy of the aggrega-
tion functions for each scaling strategy and demand profile,
whereas, Figure 4b-4d show a more summarizing view of the
accuracy. The following observations can be made: (i) The
average relative error of SUMMATION under UP-DOWN is
34.95% and 54.43% higher than AVERAGE and MAXIMUM
respectively. However, the average relative error of AVER-
AGE under DOWN-UP is 4.58% and 54.04% higher than
SUMMATION and MAXIMUM. (ii) In SUMMATION under
UP-DOWN, the average relative error for SS-1 is 6.64% and
9.67% lower than SS-2 and SS-4 respectively. For DOWN-UP,
SS-1 is 8.10% and 9.45% lower than SS-2 and SS-4 respec-
tively. In AVERAGE under UP-DOWN, the average relative
error for SS-1 is 12.29% and 31.77% higher than SS-2 and
SS-4 respectively. For DOWN-UP, SS-1 is 8.64% and 10.04%
lower than SS-2 and SS-4 respectively. In MAXIMUM, the
difference between the scaling strategies is negligible. (iii)
Compared to the scaling strategies, FIXED that has 3000
aggregators throughout the experiment has on average 20.52%
and 10.93% higher average relative error under UP-DOWN
and DOWN-UP respectively. This is because of the higher
number of aggregators (3000 over 1500) in the network.

Figure 5 illustrates the computed aggregates over runtime.
The plots include the following information: (i) RAW that is
the ‘true’ values of the aggregates computed using as input
the original data. (ii) STATE that is the ‘true’ values of
the aggregates computed using as input the selected states

(a) Overview

(b) SUMMATION (c) AVERAGE

(d) MAXIMUM

Figure 4. Accuracy of the three aggregation functions for each scaling
strategy and demand profile.

extracted by clustering the original data. (iii) FIXED that is
the estimated values of the aggregates computed by DIAS with
the maximum of 3000 aggregators online. (iv) The estimated
values of the aggregates using the three scaling strategies.
STATE approximates very well the RAW in SUMMATION
and AVERAGE, whereas in the high values of MAXIMUM the
DIAS approximation deteriorates. The average relative error
between RAW and STATE in MAXIMUM is 4.70%.

Moreover, Figure 5 explains the findings shown in Figure 4.
For instance, at each scaling step during which aggregators
are connected, there are sudden drops in accuracy, which are
especially high in SUMMATION and MAXIMUM, given that
AVERAGE has mainly values in [0, 1]. It is also observed that
during the epochs 100 to 419 in which RAW (and therefore
STATE) change rapidly to lower values (energy consumption
decreases), the drops in accuracy are higher than the more
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(a) SUMMATION, UP-DOWN (b) SUMMATION, DOWN-UP

(c) AVERAGE, UP-DOWN (d) AVERAGE, DOWN-UP

(e) MAXIMUM, UP-DOWN (f) MAXIMUM, DOWN-UP

Figure 5. Computed aggregates over runtime.

stable aggregates during the epochs 420 to 739. Drops in
accuracy are higher when a higher number of aggregators is
involved in the scaling step and therefore the drop peaks of SS-
1 are higher than the ones of SS-2 and SS-4. These drops are
quantified in Figure 6 that illustrates the average relative error
for each scaling strategy and each scaling step. For instance,
the average relative error of SUMMATION at scaling step
4 under UP-DOWN is 10.70% and 20.27% higher for SS-1
compared to SS-2 and SS-4. The respective error increase for
AVERAGE is 32.74% and 63.49%.

Note also that in both Figure 5 and 6 the scaling strategies
have the capacity to react faster than FIXED in changes of the
selected states (epochs 300 to 500 in Figure5a to 5d). This is
because of the lower number of data consumers, resulting in
a lower number of required aggregate updates in the network.
However, the high accuracy in FIXED is more stable than
the one of the scaling strategies in which the number of

(a) SUMMATION, UP-DOWN (b) SUMMATION, DOWN-UP

(c) AVERAGE, UP-DOWN (d) AVERAGE, DOWN-UP

(e) MAXIMUM, UP-DOWN (f) MAXIMUM, DOWN-UP

Figure 6. Accuracy of aggregation functions at each scaling step for different
demand profiles, scaling strategies and demand profiles.

aggregators varies.
Figure 7 shows the communication cost of the scaling

strategies in simulation and live simulation mode. The fol-
lowing observations can be made: (i) At each scaling step
of the strategies in simulation mode, there is a burst in
the communication cost as disseminators discover the joined
aggregators and initiate aggregation sessions with them. This
can be seen in Figure 7a and Figure 7b for UP-DOWN and
DOWN-UP respectively. (ii) In live operational mode, this
effect smooths out due to the asynchronicity of the scaling
events. (iii) The communication cost of FIXED follows the
pattern of the data, meaning the changes of SUMMATION
as shown in Figure 5. The communication cost of FIXED in
simulation and live mode is on average 32.54% and 34.25%
higher than the one of the strategies as a higher number of
aggregators is present in FIXED.

Figure 8 illustrates the total communication cost, aggregated

(a) Epoch 14 (b) Epoch 15 (c) Epoch 16 (d) Epoch 18 (e) Epoch 19 (f) Epoch 20

(g) Epoch 21 (h) Epoch 22 (i) Epoch 23 (j) Epoch 24 (k) Epoch 25 (l) Epoch 26

Figure 3. Visualization of DIAS with 50 nodes, each having a disseminator and an aggregator. The dashed yellow lines indicate the connections established
by the peer sampling service, whereas the white and blue solid lines indicate the push-pull peer-to-peer messages of the aggregation sessions. The nodes are
colored red at the very beginning, indicating maximal errors in the computation of the aggregation functions. As more aggregation sessions are performed, the
nodes turn to green, indicating maximal accuracy by estimating the actual values of the aggregation functions correctly. DIAS eliminates the communication
cost as the accuracy increases and the disseminators communicate with all available unexploited and outdated aggregators.

DIAS and elsewhere. This section illustrates a solution to
address this challenge.

The proposed solution relies on a summarization unit that
transforms the raw data into a stream of selected states chosen
from a limited number of k possible states. This transformation
turns the raw data to the summarized data. The summarized
data are representative values of the raw data, and they can
be locally computed using data mining and machine learning
techniques applied on historical raw data [18]. For example,
instead of sending to DIAS the exact power consumption
readings from a smart sensor, a stream of three possible
values can be sent that represent the low, medium and high
power consumption profiles of a household. These profiles
can be extracted by clustering [19] historical raw data with
an algorithm such as k-means and using the centroid of
the clusters as possible states. This training process can be
repeated at much larger intervals than the data collection, e.g.
daily or weekly. A future raw data record ri generated by a
sensor can be tested in which cluster it belongs to by using a
distance measure such as the Euclidean distance. In this case,
the selected state is determined as follows:

s =
k

argmin
u=1

(|ri � pi,u|), (1)

where s is the index of the selected state pi,s 2 Pi and ri is
the most recent raw data record generated from a sensor. The
summarized data have a lower information content than the
raw data and therefore a level of privacy is introduced.

The number of possible states is selected as a system
parameter controlling the storage and communication cost of
DIAS and the privacy-preservation by looking at the number of
possible states as the level of information reveal. The number
of possible states can be also selected in an automated fashion
via machine learning or data mining techniques. For example,

the expectation maximization (EM) algorithm [19] indicates
the number of clusters that best represents some given data.

Moreover, data suppliers may choose if they report every
change of the selected state to the DIAS network. This is a
way to control and regulate (i) the privacy-preservation, (ii) the
communication cost between devices and DIAS nodes and (iii)
the communication cost within DIAS. This is achieved with the
send factor (SF) that determines a repeated time period4 Ts in
which the selected states are sent to DIAS. For example, a send
factor of 3 means that the selected state is sent to DIAS every
3 ⇤ T . Algorithm 4 illustrates how the send factor is applied
in the summarization unit of Internet of Things devices.

Algorithm 4 Influencing the reported selected state in DIAS
using the send factor.
Require: Ts, ri, Pi

1: t = 0
2: loop

3: wait(T )
4: t = t+ 1
5: if t = Ts then

6: s = argmink
u=1(|ri � pi,u|)

7: send pi,s
8: t = 0
9: else

10: skip sending pi,s
11: end if

12: end loop

The implementation of such a summarization unit depends
on the Internet of Things devices used and the application.
In devices with very low processing and power capacity, the
possible states can be preprogrammed and updated manu-
ally. An automated lightweight data analysis, e.g. frequen-
cies of the generated sensor values, is feasible in devices

4This period should be usually equal or larger than the main execution
period of DIAS.
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Figure 3. Visualization of DIAS with 50 nodes, each having a disseminator and an aggregator. The dashed yellow lines indicate the connections established
by the peer sampling service, whereas the white and blue solid lines indicate the push-pull peer-to-peer messages of the aggregation sessions. The nodes are
colored red at the very beginning, indicating maximal errors in the computation of the aggregation functions. As more aggregation sessions are performed, the
nodes turn to green, indicating maximal accuracy by estimating the actual values of the aggregation functions correctly. DIAS eliminates the communication
cost as the accuracy increases and the disseminators communicate with all available unexploited and outdated aggregators.
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DIAS and the privacy-preservation by looking at the number of
possible states as the level of information reveal. The number
of possible states can be also selected in an automated fashion
via machine learning or data mining techniques. For example,

the expectation maximization (EM) algorithm [19] indicates
the number of clusters that best represents some given data.

Moreover, data suppliers may choose if they report every
change of the selected state to the DIAS network. This is a
way to control and regulate (i) the privacy-preservation, (ii) the
communication cost between devices and DIAS nodes and (iii)
the communication cost within DIAS. This is achieved with the
send factor (SF) that determines a repeated time period4 Ts in
which the selected states are sent to DIAS. For example, a send
factor of 3 means that the selected state is sent to DIAS every
3 ⇤ T . Algorithm 4 illustrates how the send factor is applied
in the summarization unit of Internet of Things devices.

Algorithm 4 Influencing the reported selected state in DIAS
using the send factor.
Require: Ts, ri, Pi

1: t = 0
2: loop

3: wait(T )
4: t = t+ 1
5: if t = Ts then

6: s = argmink
u=1(|ri � pi,u|)

7: send pi,s
8: t = 0
9: else

10: skip sending pi,s
11: end if

12: end loop

The implementation of such a summarization unit depends
on the Internet of Things devices used and the application.
In devices with very low processing and power capacity, the
possible states can be preprogrammed and updated manu-
ally. An automated lightweight data analysis, e.g. frequen-
cies of the generated sensor values, is feasible in devices

4This period should be usually equal or larger than the main execution
period of DIAS.
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Fig. 3. The DIAS network activity: Yellow lines indicate gossip-based communication and blue lines aggregation communication. Note how the aggregation messages gradually decrease as 
the aggregate estimates converge to the actual values indicated by the red nodes turning into green ones.  

Fig. 2.  Fault-tolerance process: A corrective agent migrates proactively (to mitigate failures) or reactively (to mitigate 
leaving) from its parent to another host. A status agent at the parent sends updates to signal its connectivity. Based on 
these updates,  the corrective agent can initiate reverse computations that improve the accuracy of the aggregates. An 
extreme example with 80% of the data suppliers failing is shown in (c) in which the threashold of the corrective agent 
before starting the reverse computations is set to 250 epochs.  

Setup of Live  
Demonstrator Database 

DIAS online &  
connected to GDELT  

Fig. 4. DIAS-GDELT TRL-6 live demonstrator in operation for 4 months exchanging million of messages to adapt the aggregates to the actual 
values. These values represent the total number of GDELT news events from 28 countries. The news events can be accessed via the GDELT API 
and they update every 15 minutes.  

Fig. 1.  Joining/leaving process: A data consumer connects at Node 1. It is detected by Node 2 via gossip 
communication. Three extreme join/leave profiles are shown in (a) and how DIAS adapts the estimation of the total 
Smart Grid consumption in a network of 3000 nodes as shown in (b). 
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2  Applicability 
 

Participatory Smart City Crowd-sensing 

AVERAGE TRAFFIC FLOW 

VOTING & SELF-GOVERNACE 

TOTAL ENERGY CONSUMPTION 

AVERAGE NOISE POLUTION 

REPUTATION & RATING MEASUREMENTS 

How data consumers can accurately 

estimate aggregation functions having as 

input shared data of data suppliers? 

PRIVACY-PRESERVING DECENTRALIZED NETWORK 

DATA SUPPLIERS: THEY SHARE DATA 

DATA CONSUMERS: THEY AGGREGATE DATA 
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(b) 

(c) 

gdeltproject.org 

TRL-6 feasibility & proof of concept 

Data analytics by citizens, for citizens 

Accuracy under extreme dynamics 
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