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2. Agents have both a local & global objective: minimization of cost functions 
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Planning Flexibility – Residential Power Demand 

Water Heater 
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Planning Flexibility – Bike Sharing 

Location A 

Location B 

Location C 



| | Self-adaptive Learning in Decentralized Combinatorial Optimization August 2018 Dr. Evangelos Pournaras 9 

Planning Flexibility – Charging EVs 
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Crowdsourced operational flexibility 
autonomy, trust, privacy, no nudging 

1. Autonomous agents self-determine a number of plans to schedule/allocate resources 

2. Agents have both a local & global objective: minimization of cost functions 
 

A new decentralized AI paradigm to follow up with the blockchain revolution 
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Linear vs. quadratic cost functions 

Can be locally optimized – no coordination required 

Cannot be locally optimized – require coordination & collective decision-making 

Example: minimize variance or root mean square error  
 

generic stability & matching indicators 
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Centralized Computational Model 

(+) 

Brute Force 

Complexity = # of possible plans# of devices 
Combinatorial optimization problem – NP hard 
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balancing individual & collective goals 
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Smart Grids: Local-to-global Objectives 

Local:   make a shower, cook, laundry, charge EV 
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Smart Cities: Local-to-global Objectives 

Global: prevent overload/underload of bicycle stations 
             minimize manual bicycle relocations 
             minimize operational costs  
             minimize investment costs    

Local:  station to pick or leave a bicycle 



| | Self-adaptive Learning in Decentralized Combinatorial Optimization 

Collective Decision-making Problem 

August 2018 Dr. Evangelos Pournaras 16 

Crowdsourced operational flexibility 
autonomy, trust, privacy, no nudging 

Socially responsible design 
balancing individual and collective goals 

Crowdsourced computational resources 
decentralized collective intelligence & self-management 

1. Autonomous agents self-determine a number of plans to schedule/allocate resources 

2. Agents have both a local & global objective: minimization of cost functions 
 

3. Agents coordinate to select a plan that minimizes cost functions 
 

A new decentralized AI paradigm to follow up with the blockchain revolution 
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Plan Selection 

The number of combinations is O(pa), where p is the
maximum number of plans per agent and a is the number of
agents in the network. This means only small in size problems
are feasible to solve optimally. The overall problem can be
classified as 0-1 multiple-choice combinatorial optimization
problem. A related problem is, for example, the 0-1 multiple-
choice knapsack problem. In general, these problems are NP-
hard, which raises the need for approximation algorithms such
as I-EPOS, the algorithm introduced in Section III.

Agents’ individual preferences for certain plans are con-
trolled via the parameter �. A � = 0 means no preferences are
considered. The larger the �, the stronger the preferences are as
depicted in Figure 2. The preference of agent a towards a plan
is measured by the local cost function fL (sa). Each agent a
orders the possible plans Pa = {p1,a,p2,a, . . . ,pn,a} accord-
ing to their local cost fL(p1,a)  fL(p2,a)  · · ·  fL(pn,a).
Plans with lower index are preferred over plans with larger
index. The local cost expands the system objective space with
the following opportunities:

selectiontest possible plans

cost
preference weight
global cost

Fig. 2: Agent preferences in plan selection.

• Plan selections with a low average local cost EL, so that
agents have also an explicit local benefit from their plan
selections. It is computed as follows:

EL = µ{fL (sa) | a 2 A}. (2)

• Plan selections, whose local cost has a low standard
deviation among agents, so that agents’ contributions are
equally distributed. In this case the standard deviation is a
measure of system fairness [15]. In this paper, the unfair-
ness U is computed as the standard deviation normalized
with the mean of the local cost for all selections:

U =
�{fL (sa) | a 2 A}

µ{fL (sa) | a 2 A}
. (3)

Measurements of fairness can be performed after plan
selections by all agents.

III. SELF-ADAPTIVE LEARNING

The network is assumed (self-)organized in a tree topology,
as this structure can be constructed and maintained within a
dynamic and distributed environment for arbitrary connected
networks using AETOS [16], [9], [17] or the ECHO [18]
algorithm, for example. A tree is a cycle-free connected net-
work. It serves the purpose of computing the aggregated and
global response in an efficient and accurate way, by preventing
double-counting. Moreover, a tree topology provides struc-
tured bottom-up and top-down incremental interactions, and
therefore, a self-adaptive learning can be performed iteratively

in a similar fashion as in the hierarchical structures of neural
networks. The root agent is denoted as r. Each agent a has a set
of children Ca and a set of descendants Da, with Ca ✓ Da. An
aggregated response aa =

P
d2Da

sd of agent a corresponds
to the descendants’ response in the branch underneath.

The algorithm performs a number of iterations t. Each
iteration consists of a bottom-up and a top-down phase in
which the agents change their selected plans to reduce the
global cost compared to the previous iteration. Algorithm 1
shows the pseudocode of I-EPOS. The bottom-up and top-
down phase for iteration ⌧ = 1, . . . , t are explained below.
To simplify the equations, the selected plans at iteration 0 are
assumed to be zero: s(0)a = 0, 8a 2 A.

Input: agent a, plans Pa

Result: selected plan s(t)a , aggregated response a(t)
a , global response g(t)

s(0)a  0, a(0)
a  0, g(0)

 0, t(0)c  0 8c 2 Ca;
for ⌧=1 to t do

/* BOTTOM-UP PHASE */
if agent a is not a leaf node then

while messages from children are missing do

receive preliminary branch response t̃(⌧)
c from child c;

end

if ⌧ = 1 then

�̃(⌧)
c  1, 8c 2 Ca;

else

compute the preliminary deltas �̃(⌧)
c 8c 2 Ca from Equation 4 ;

end

end

compute the preliminary aggregated response ã(⌧)
a and global response

g̃(⌧)
a according to Equation 5;

select preliminary plan s̃(⌧)
a according to Equation 6;

if this agent is not the root node then

send preliminary branch response t̃(⌧)
a = s̃(⌧)

a + ã(⌧)
a to the parent;

end

/* TOP-DOWN PHASE */
if this agent is the root node r then

g(⌧)
 s̃(⌧)

r + ã(⌧)
r ;

�(⌧)
r  1;

else

receive global response g(⌧) and delta value �(⌧)
a from the parent;

end

�(⌧)
c  �(⌧)

a �̃(⌧)
c , 8c 2 Ca;

send global response g(⌧) and delta value �(⌧)
c to each child c 2 Ca;

compute selected plan s(⌧)
a , aggregated response a(⌧)

a and branch response
t(⌧)
c for each child c 2 Ca according to Equation 8;

end

Algorithm 1: The I-EPOS algorithm.

A. Bottom-up phase

In this phase, each agent has knowledge about the changes
of the aggregated response performed by changes in the
selected plans of descendants in the branch underneath the
agent. This information propagates from the leaf nodes to the
root node. Changes in selected plans of all other agents are not
known. All local decisions made by the agents are preliminary
at this phase, as the effective decisions are made during the
top-down phase using knowledge about the parents’ decisions.
A preliminary plan selection is an actual estimated guess of
the optimal one given the incomplete agent knowledge. These
guesses are evaluated by the ancestors, who decide which
changes of plan selections to approve and which ones to reject.
This decision is encoded in the delta value �a of an agent a,
where �a = 1 means the preliminary selection of agent a

centralized management in techno-socio-economic systems.
Agents in I-EPOS autonomously self-determine (i) possible

plans that schedule the operation of an application and (ii)
their preferences for these plans. The possible plans represent
agents’ flexibility. Agents are structured in self-organized tree
topologies over which they perform collective decision-making
in a bottom-up and top-down phase. This process repeats,
agents self-adapt their choices and learn new monotonously
improved solutions. Information exchange is always either
local or aggregated. Experimental evaluation illustrates strik-
ing findings: I-EPOS monotonously and rapidly improves
solutions in the order of 10 iterations, a very few number
of changes in agents’ selections are required to maximize
performance thanks to the self-adaptation process over the tree
topology, trade-offs between local vs. global costs as well as
fairness are manageable and finally the cost-effectiveness is
notoriously superior to related algorithms, where cost stands
for computational and communication overhead.

The contributions of this paper are the following: (i) A
new decentralized combinatorial optimization algorithm based
on self-adaptive learning. (ii) A benchmark and performance
comparison of I-EPOS with three other related algorithms
that have not been systematically and rigorously compared
in earlier work. (iii) The applicability of I-EPOS in two
application scenarios of participatory sharing economies: en-
ergy management and bicycle sharing. Real-world data from
state-of-the-art pilot projects are used for the experimental
evaluation. (iv) The implementation of I-EPOS and other
related algorithms as a paradigmatic artifact for promoting
further research on decentralized learning and optimization as
well as the design of new application scenarios.

This paper is organized as follows: Section II formulates the
optimization problem and the challenges this paper tackles.
Section III introduces I-EPOS and discusses its design as-
pects. Section IV experimentally evaluates I-EPOS, including
a performance comparison with three other algorithms and
the illustration of two application scenarios in participatory
sharing economies. Section V discusses the implementation
of I-EPOS as a paradigmatic artifact for community. Finally,
Section VI concludes this paper and outlines future work.

II. DECENTRALIZED COMBINATORIAL OPTIMIZATION

Table I summarizes the mathematical symbols used in this
paper. Assume an agent a with a finite set of possible plans
Pa representing different operational schedules, for instance
a time schedule for the allocation of resources, e.g. energy.
A plan is a vector with real values about the allocation of
resources. An agent a has to select one and only one possible
plan to determine its future operation, the selected plan,
referred to as sa. Figure 1a shows the selected plan as one out
of three possible plans. Plan generation can be performed with
various methodologies that include clustering [12], Markov
decision processes for fast and optimal plans [13], or model
checking of stochastic multiplayer games [14].

Each agent a 2 A is connected to a network consisting
of a set of agents A. The selected plans of several agents

TABLE I: Mathematical notations used in this paper.
Notation Meaning

A finite set of all agents in the network
Ba = {0, 1} binary decision for agent a
Ca ⇢ Da set of children for agent a
Da ⇢ A set of descendants for agent a
O(P,A) =

Q
a2A Pa all combinations of sets Pa for agents in A

Pa ⇢ Rd possible plans of agent a
a = |A| number of agents
c = maxa2A |Ca| maximum number of children per agent
d 2 N+ size of plans
p = maxa2A |Pa| maximum number of plans per agent
t 2 N+ number of iterations
o 2 O(P,A) a combination
o?

2 O(P,A) an optimal combination
oa 2 o or oa 2 o plan of agent a in combination o 2 O(P,A)
a 2 A an agent
c 2 Ca a child of agent a
d 2 Da a descendant of agent a
r 2 A root agent in the tree
⌧ 2 {1, ..., t} number of the current iteration
p 2 Pa possible plan of agent a
s(⌧)
a 2 Pa selected plan of agent a at iteration ⌧

g(⌧) =
P

a2A s(⌧)
a global response of the network at iteration ⌧

a(⌧)
a =

P
d2Da

s(⌧)
d

descendants’ aggregated response of agent a at itera-
tion ⌧

t(⌧)
a = s(⌧)

a + a(⌧)
a aggregated branch response of agent a at iteration ⌧

�(⌧)
a 2 {0, 1}

approval or rejection of branch selection for agent a
at iteration ⌧

s̃(⌧)
a , g̃(⌧)

a , ã(⌧)
a , t̃(⌧)

a , �̃(⌧)
a preliminary s(⌧)

a , g(⌧), a(⌧)
a , t(⌧)

a and �(⌧)
a

rx̃(⌧) = x̃(⌧)
�x(⌧�1) change of preliminary value from the one of the pre-

vious iteration for x(⌧)
2 {s(⌧)

a , g(⌧), a(⌧)
a , t(⌧)

a }

fG : Rd
! R global cost function

fL : Rd
! R local cost function

E(⌧)
G = fG

⇣
g(⌧)

⌘
global cost at iteration ⌧

E(⌧)
L

average local cost at iteration ⌧

U(⌧) unfairness at iteration ⌧

w : Rd
! R preference weight; raises the cost of disliked plans

� 2 R controls the trade-off between global and local cost
⇢i,a 2 R dislike of plan i by agent a

(a) Selected plan. (b) Aggregated response. (c) Global response.

Fig. 1: Plans and responses. An individual box denotes a plan.

summed up together form the aggregated response as shown
in Figure 1b. The selected plans of all agents form a global
response vector g =

P
a2A

sa shown in Figure 1c. A global
response comes with a global cost EG = fG (g), where fG is
a global cost function. System-wide, a global response with
low global cost is preferred over one with a high global cost.

The agents’ objective is to cooperatively select plans that
minimize the global cost. Each possible combination o 2

O(P,A) =
Q

a2A
Pa consists of one plan oa per agent a,

from which the optimal combination o? with the minimal
global cost is selected. Cost minimization is defined as follows:

o? = argmin
o2O(P,A)

fG

0

@
X

a2A,oa2o

oa

1

A

sa = o?
a 8a 2 A. (1)

λ=0 : no agent preferences 
λ>0 : bias towards agent preferences 
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Decentalized Collective Decision-making 

1 bottom-up + 1 top-down phase = 1 learning iteration 

Adaptive & coordinated choices 

Top-down phase 
Previous aggregate choices 

Bottom-up phase 
Descendants aggregate choices 
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Decentralized Learning 

- 1000 agents in binary tree 

- 16 possible plans 
  (size 100, standard normal distribution) 

- Objective: minimize variance 

- λ=0, no preferences 

Global optimality: Top 3% of the solution space! 

Monotonously improving/learning solutions! 

Striking findings 
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State of the Art Comparisons 
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Cost-effectiveness: I-EPOS vs. COHDA 

I-EPOS COHDA 

vs. 

Converges faster with fewer changes! 
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Self-managed  
Sharing Economies 



| | Self-adaptive Learning in Decentralized Combinatorial Optimization August 2018 Dr. Evangelos Pournaras 24 

Smart Grids – Residential Power Demand 

(a) iteration 2 (b) iteration 3 (c) iteration 4 (d) iteration 5 (e) iteration 6 (f) iteration 7 (g) iteration 8 (h) iteration 9

(i) iteration 2 (j) iteration 12 (k) iteration 22 (l) iteration 32 (m) iteration 42 (n) iteration 52 (o) iteration 62 (p) iteration 72

Fig. 11: (a)-(h) I-EPOS vs. (i)-(p) COHDA. Network snapshots showing the agents (in black) changing their selection and
agents (in white) that do not change their selection.
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Fig. 12: Power peak-shaving by I-EPOS on the PNW dataset.
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Fig. 13: Trade-off between peak demand reduction
and average demand shift in the selected plans
� 2 {0, 0.5, . . . , 4, 5, 6, 100} after t = 60 iterations for
the PNW datasets.

station should remain load-balanced under various conditions,
such as population density, mobility, weather etc. Manual
relocation of bicycles by system operators in not viable in
the long term and can increase operational costs significantly.

In the context of bicycle sharing, the possible plans may
concern user recommendations about the stations from which
bicycles are picked up and to which they are returned. The
possible plans are encoded as a vector with values the incom-
ing minus the outgoing bicycles of a user in each station at a

certain time slot. For example, a user traveling from station 1
to station 3 and from station 4 to station 3 has the following
plan: (�1, 0, 2,�1, . . . ). I-EPOS can select recommended
stations for each user agent11 such that the number of bicycles
among the stations remains balanced. This can be formalized
as minimizing the variance of the global response. The plan
dimension here is the stations in contrast to the energy domain
in which load-balancing over time is performed.

I-EPOS generates bicycle sharing plans by reasoning based
on real-world historical data12 from the Hubway bicycle shar-
ing system in Paris. Although this dataset does not contain
personalized records, user trips are extracted from user infor-
mation: zip-code, year of birth and gender. All trips that have
common values in these fields are assumed to be made by the
same user. A random subset of 1000 unique users is used as
agents in I-EPOS, with a different seed for each run of the
algorithm. The timeslot is chosen from 8:00am to 10:00am.
All historic unique trips a user did in the defined timeslot of
a week day are considered as the possible plans for that day.
The distance of the stations is encoded in the trips of the users.
The local cost of each plan is defined by the likelihood the
user does not make the trip instructed in the plan. For instance,
if three plans are chosen in 4, 5 and 1 days of the measured
time period respectively, the local cost for these plans is 0.6,
0.5 and 0.9 respectively.

Figure 14a illustrates the load-balancing of the stations
using I-EPOS without varying the local cost of the plans after
15 iterations. I-EPOS reduces the variance from roughly 230
to 0.58. This indicates a significant potential to reduce the
number of manual bike relocations. However, recommenda-
tions may not be followed if the user is unlikely to choose a
certain trip, i.e. a trip with high local cost. Figure 14b shows
the trade-off between global and local cost controlled via the
� parameter after 30 iterations. A � = 0 is the one extreme in
which the local cost is not considered, in contrast to � = 100

11Such an agent can be implemented as a mobile app, for instance.
12The dataset is made available in the context of the Hubway Data Vi-

sualization Challenge: http://hubwaydatachallenge.org/ (last accessed: March
2017).

(a) iteration 2 (b) iteration 3 (c) iteration 4 (d) iteration 5 (e) iteration 6 (f) iteration 7 (g) iteration 8 (h) iteration 9

(i) iteration 2 (j) iteration 12 (k) iteration 22 (l) iteration 32 (m) iteration 42 (n) iteration 52 (o) iteration 62 (p) iteration 72

Fig. 10: (a)-(h) I-EPOS vs. (i)-(p) COHDA. Network snapshots showing the agents (in black) changing their selection and
agents (in white) that do not change their selection.
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Fig. 11: Power peak-shaving by I-EPOS on the PNW dataset.
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Fig. 12: Trade-off between peak demand reduction
and average demand shift in the selected plans
� 2 {0, 0.5, . . . , 4, 5, 6, 100} after t = 60 iterations for
the PNW datasets.

algorithm. The timeslot is chosen from 8:00am to 10:00am.
All historic unique trips a user did in the defined timeslot of
a week day are considered as the possible plans for that day.
The local cost of each plan is defined by the likelihood the
user does not make the trip instructed in the plan. For instance,
if three plans are chosen in 4, 5 and 1 days of the measured
time period respectively, the local cost for these plans is 0.6,
0.5 and 0.9 respectively.

Figure 13a illustrates the load-balancing of the stations

using I-EPOS without varying the local cost of the plans after
15 iterations. I-EPOS reduces the variance from roughly 230
to 0.58. This indicates a significant potential to reduce the
number of manual bike relocations. However, recommenda-
tions may not be followed if the user is unlikely to choose a
certain trip, i.e. a trip with high local cost. Figure 13b shows
the trade-off between global and local cost controlled via the
� parameter after 30 iterations. A � = 0 is the one extreme in
which the local cost is not considered, in contrast to � = 100
that results in global response equivalent to the original data.

20 40 60 80
station number

-100
-80
-60
-40
-20

0
20
40
60

ch
an

ge
in

nu
m

be
r

of
bi

ke
s

Original
I-EPOS

(a) Original bicycle allocation vs.
I-EPOS global response.
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(b) Trade-off between variance and av-
erage likelihood of the selected plans
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iterations.

Fig. 13: I-EPOS performance for the bicycle sharing dataset.

Results show that making plan selection with the average
likelihood of the selected plan reduced in half is followed by
a reduction of the variance by a factor of more than 100.

V. I-EPOS AS A PARADIGMATIC ARTIFACT

Motivated by the tremendous potential that solutions to
decentralized combinatorial optimization problems can have in
building more sustainable and resilient digital societies [27],
as shown in the application scenarios of participatory sharing
economies in Section IV-B, authors move a step forward and
contribute a paradigmatic software implementation of I-EPOS
and other supporting software to the broader relevant research

1000 households, 13 plans, generated by load-shifting 
 Agent preferences (λ): How much load-shifting is tolerable  
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2910 electrical vehicles 

Weekly planning & optimization 

4 plans, generated using historic trips 

Daily vs. weekly planning & optimization 

100% & 50% vehicle participation 

Daily planning & optimization 

30%-80% reduction in variance 
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Smart Cities – Bike Sharing 

(a) iteration 2 (b) iteration 3 (c) iteration 4 (d) iteration 5 (e) iteration 6 (f) iteration 7 (g) iteration 8 (h) iteration 9

(i) iteration 2 (j) iteration 12 (k) iteration 22 (l) iteration 32 (m) iteration 42 (n) iteration 52 (o) iteration 62 (p) iteration 72

Fig. 10: (a)-(h) I-EPOS vs. (i)-(p) COHDA. Network snapshots showing the agents (in black) changing their selection and
agents (in white) that do not change their selection.
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Fig. 12: Trade-off between peak demand reduction
and average demand shift in the selected plans
� 2 {0, 0.5, . . . , 4, 5, 6, 100} after t = 60 iterations for
the PNW datasets.

algorithm. The timeslot is chosen from 8:00am to 10:00am.
All historic unique trips a user did in the defined timeslot of
a week day are considered as the possible plans for that day.
The local cost of each plan is defined by the likelihood the
user does not make the trip instructed in the plan. For instance,
if three plans are chosen in 4, 5 and 1 days of the measured
time period respectively, the local cost for these plans is 0.6,
0.5 and 0.9 respectively.

Figure 13a illustrates the load-balancing of the stations

using I-EPOS without varying the local cost of the plans after
15 iterations. I-EPOS reduces the variance from roughly 230
to 0.58. This indicates a significant potential to reduce the
number of manual bike relocations. However, recommenda-
tions may not be followed if the user is unlikely to choose a
certain trip, i.e. a trip with high local cost. Figure 13b shows
the trade-off between global and local cost controlled via the
� parameter after 30 iterations. A � = 0 is the one extreme in
which the local cost is not considered, in contrast to � = 100
that results in global response equivalent to the original data.
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Fig. 13: I-EPOS performance for the bicycle sharing dataset.

Results show that making plan selection with the average
likelihood of the selected plan reduced in half is followed by
a reduction of the variance by a factor of more than 100.

V. I-EPOS AS A PARADIGMATIC ARTIFACT

Motivated by the tremendous potential that solutions to
decentralized combinatorial optimization problems can have in
building more sustainable and resilient digital societies [27],
as shown in the application scenarios of participatory sharing
economies in Section IV-B, authors move a step forward and
contribute a paradigmatic software implementation of I-EPOS
and other supporting software to the broader relevant research

1000 bike users, varying # of plans, generated using historic trips (time: 08:00-10:00) 
 Agent preferences (λ): Average likelihood of a trip in the historic data 
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Conclusions 

I-EPOS: Striking performance against state of the art 

Grand challenge 
 decentralized learning in combinatorial optimization made feasible 
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Future Work 

Linking the organizational aspects, e.g. social networking, with the learning capacity 

Other applications 
1. 1. Load-balancing of cloud and data center infrastructures 
2. 2. Sustainable consumption (ASSET EU project) 
3. 3. Vehicle sharing for traffic optimization 

 

Incentivization scheme based on blockchain technology 
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Website: epos-net.org 
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Community Software Artifact  

Download the software exemplar (2.7 GB) 
 http://epos-net.org/shared/I-EPOS.zip 

Follow the instructions 
index.html 
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