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Abstract The mandate of citizens for more socially responsible information systems
that respect privacy and autonomy calls for a computational and storage decentral-
ization. Crowd-sourced sensor networks monitor energy consumption and traffic
jams. Distributed ledgers systems provide unprecedented opportunities to perform
secure peer-to-peer transactions using blockchain. However, decentralized systems
often show performance bottlenecks that undermine their broader adoption: prop-
agating information in a network is costly and time-consuming. Optimization of
cost-effectiveness with supervised machine learning is challenging. Training usu-
ally requires privacy-sensitive local data, for instance, adjusting the communication
rate based on citizens’ mobility. This paper studies the following research question:
How feasible is to train with privacy-preserving aggregate data and test on local
data to improve cost-effectiveness of a decentralized system? Centralized machine
learning optimization strategies are applied to DIAS, the Dynamic Intelligent Aggre-
gation Service and they are compared to decentralized self-adaptive strategies that
use local data instead. Experimental evaluation with a testing set of 2184 decentral-
ized networks of 3000 nodes aggregating real-world Smart Grid data confirms the
feasibility of a linear regression strategy to improve both estimation accuracy and
communication cost, while the other optimization strategies show trade-offs.

1 Introduction

The optimization cost-effectiveness in decentralized networked systems is challeng-
ing, for instance, sensor networks making collective measurements for energy [3] or
traffic monitoring [6]. Communication cost as well as convergence time required
for data to propagate in a decentralized network are performance bottlenecks for
their broader adoption. Instead, in centrally managed systems such as cloud com-
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puting infrastructures [22] in which performance data from each system component
can be locally available or remotely accessed, a broad spectrum of optimization and
machine learning techniques can be used to tune performance [10]. Hibernation of
idle system components to save energy and dynamic resource allocation based on
varying computational demand are some examples. Nonetheless, the data based on
which optimization of cost-effectiveness is performed can be personal and privacy-
sensitive. Citizens may not be willing to share their data. As a result, the data-
intensive operations of traditional optimization and machine learning techniques
oppose the design of decentralized systems and in particular they are not easily ap-
plicable in a privacy-sensitive application context. The resolution of this discrepancy
is the subject and focus of this paper.

This paper addresses the following research questions: (i) How to optimize cost-
effectiveness in decentralized systems using supervised machine learning that ex-
clusively uses aggregate data for training and local data for testing? (ii) How to
aggregate training data in a privacy-preserving way? To address these questions,
a centralized machine learning approach is introduced that relies on baseline and
runtime performance data aggregated over the nodes in a privacy-preserving way
using differential privacy [7] or homomorphic encryption [14]. The learning capac-
ity of linear regression and neural network classifiers is studied given the informa-
tion loss by the performed aggregation. This approach is compared to decentralized
self-adaptive strategies that rely instead on local data. The optimization approaches
are implemented in DIAS, the Dynamic Intelligent Aggregation Service [18] that
computes aggregation functions in a fully decentralized fashion under continuously
changing input data. The accuracy of the estimations and the communication cost
are optimized by the strategies. Training data are generated from simulation test
runs of 2184 decentralized networks with 3000 nodes aggregating real-word Smart
Grid data. The linear regression classifier is the strategy that improves both accuracy
and communication cost. The neural network classifier shows a trade-off of lower
communication cost for a lower accuracy, while the self-adaptive strategies show
the opposite trade-off: higher accuracy at a cost of higher communication load.

The contributions of this paper are summarized as follows: (i) A new privacy-
preserving framework to apply a broad spectrum of existing machine learning tech-
niques for the optimization of cost-effectiveness in decentralized systems. (ii) The
qualitative and quantitative comparison of centralized machine learning optimiza-
tion strategies using aggregate data with decentralized self-adaptive strategies us-
ing local data. (iii) The enhancement of DIAS with the machine learning and self-
adaptive strategies that improve accuracy and communication cost.

This paper is organized as follows: Section 2 illustrates the challenge of cost-
effectiveness optimization in decentralized systems. Section 3 introduces machine
learning and self-adaptive optimization strategies. Section 4 shows their applicabil-
ity on a decentralized sensing scenario. Section 5 outlines the experimental settings
and the results. Finally, Section 6 concludes this paper and outlines future work.
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2 Cost-effectiveness Optimization in Decentralized Systems

A decentralized system is defined as a set of N (remote) autonomous nodes such
as personal computers, smart phones, wearables or other Internet of Things devices
that interact in a peer-to-peer fashion to achieve a collective goal. For instance, such
devices can exchange numerical values, e.g. sensor data, to make collective mea-
surements [18] known as in-network aggregation [5]: each device locally computes
aggregation functions, for instance, the total load of the power grid [3] or the av-
erage vehicle traffic in a city [6]. Each node disseminates its values to other nodes
whenever the values change or nodes join and leave the network. Without loss of
generality and for a concrete illustration of the research challenge, decentralized
sensing is the scenario studied in this paper.

The cost-effectiveness of decentralized systems is the focus of this paper. Cost is
the amount of resources required to perform system operations. For instance, com-
putational cost is the processing power consumed by nodes and communication cost
is the number/size of exchanged messages between them. Effectiveness reflects on
the quality of service and shows how well a decentralized system performs under a
certain cost paid. For instance, the aggregation accuracy is indicator of effectiveness
as it shows how ‘close’ the estimation of the aggregation functions is to the actual
true values. Given that improvements of accuracy are a result of updates received
by other nodes, i.e. input sensor data from joining nodes or updated data from con-
nected ones, a higher communication cost can improve system effectiveness.

This paper addresses the following challenge: self-management of trade-offs in
the cost-effectiveness of decentralized systems. A number of local parameters often
regulate cost-effectiveness, for instance, the period of push-pull gossip requests [11]
or Time-To-Live (TTL) in flooding [2]. In practice [20], the selection of these pa-
rameters is non-automated, system-wide (global) and made offline by system ad-
ministrators/operators to control effectiveness given the available resources [21] in
the deployed network infrastructure, i.e. network bandwidth or energy capacity.

Cloud computing virtualization [22] separates distributed processing and storage
from centralized resource allocation. When universal access over distributed data is
granted to a centralized authority, or when this authority collects these data, cost-
effectiveness can be optimized online with existing (supervised) machine learning
techniques [10]. However, this approach violates decentralization and raises pri-
vacy concerns over personal data that citizens may not be willing to share. This
paper studies two types of privacy-preserving optimization strategies for the cost-
effectiveness of decentralized systems: (i) machine learning and (ii) self-adaptive
strategies. These two approaches are positioned in the design space of Table 1.

Unsupervised decentralized learning is highly complex and usually requires en-
dogenous system redesign [1, 15]. Decentralized systems impose partial data stor-
age and exchange. Sharing regular updates of a full feature vector over the network
is inefficient and often infeasible [13] considering biases by outliers and initial-
ization. Instead, the introduced supervised machine learning strategies (Figure 1)
perform training using aggregate data and testing with local data at each node. Two
aggregate data types are required for training: (i) baseline performance and (ii) cost-
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Table 1: The design space of cost-effectiveness optimization in decentralized sys-
tems: Centralized optimization with local data and decentralized optimization with
aggregate data are excluded (x). The former is privacy-intrusive, while the latter
requires complex and costly mechanisms integration. Instead, centralized optimiza-
tion with aggregate data using machine learning and decentralized optimization with
local data using self-adaptive strategies are studied ().

Optimization Local Data Aggregate Data

Centralized Privacy-intrusive (x) Machine learning (%)

Decentralized Self-adaptive strategies (%) Complex & costly (x)

effectiveness data. The former are used to compare system performance with an opti-
mal performance. For instance, the actual aggregates of the sensor data can be used
as a baseline against the aggregate estimations during system runtime. This com-
parison provides the effectiveness data. Both baseline and cost-effectiveness data
are aggregated by the optimizer in a privacy-preserving way using differential pri-
vacy [7] or homomorphic encryption [14]. In differential privacy, nodes mask their
data by adding a special noise, e.g. Laplace [7], that has the following property:
when the masked data are summed up by the optimizer, the added noises cancel
out and the aggregate data are revealed without revealing the individual data of the
nodes. In homomorphic encryption this process is performed using cryptographic
keys and is therefore more secure than differential privacy, though it usually requires
key management by trusted third parties and more expensive computations [14].
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Fig. 1: The machine learning optimization approach with aggregate data.

The sequence of operations during the training phase is as follows: Nodes mask
their local sensor data used as baseline performance and send them to the opti-
mizer. The optimizer unmasks the data at an aggregate level and sends back the
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aggregate sensor data used as the global baseline performance. The nodes com-
pare the estimates of the aggregates performed in a fully decentralized way (see
Section 4) with the actual baseline aggregates sent by the optimizer using an error
metric that measures the aggregation accuracy (effectiveness). These data together
with the measured communication cost are masked before sent to the optimizer. The
optimizer unmasks the cost-effectiveness data by aggregating them and feeds them
in the learning model for training. The universally generated trained model is sent
back to the nodes based on which they locally regulate the communication cost at
low levels while maximizing effectiveness, i.e. accuracy.

On the other hand, nodes with self-adaptive strategies perform local adjustments
over parameters that control cost-effectiveness using stimuli from other nodes they
interact. No training is required. Communication cost is regulated by measuring
the portion of the network from which updates are received or by monitoring the
stability of the aggregates as an indicator of convergence, i.e. maximal effectiveness.

3 Machine Learning vs. Self-adaptive Optimization Strategies

Assume a system parameter that controls the resource utilization at each node. Re-
sources have a cost paid to improve system effectiveness. For instance, a higher
communication rate increases the speed of aggregation accuracy. Each node is given
the autonomy to regulate such system parameters to consume or save resources. Re-
source utilization is controlled within the flexibility range By, By), where By, is
a lower and By an upper bound. Assume as well that the nodes of the decentral-
ized system trigger and process events at discrete time steps referred to as epochs,
e.g. sending, and processing received messages. Nodes choose at each epoch their
resource utilization within the flexibility range [By,, By| as the means to control
cost-effectiveness. Maintaining a maximum accuracy in decentralized sensing re-
quires utilization of the maximum number By of exchanged messages per epoch.
However, input data may cancel out each other in aggregation, e.g. 5—2—3 = 0 and
therefore the update of summation does not require these data records, whose ex-
change adds up communication and computational overhead. Saving resources from
the nodes in which these records are originated is an optimization that can improve
cost-effectiveness. The rest of this section illustrates the resource utilization of the
machine learning and self-adaptive strategies in the flexibility range [By,, By].

3.1 Machine learning optimization strategies

Each node is equipped with a classifier trained to distinguish between the two
classes CONSUME and SAVE that indicate low and high cost-effectiveness respec-
tively. During testing, CONSUME sets resource utilization to By, whereas SAVE to
By Training data are collected via (i) simulations or (ii) pilot test runs. In decen-
tralized sensing, they concern the number of exchanged messages and the estimated
aggregates among others. Formally, let z; € R? be a d-dimensional feature vec-
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tor with ¢ = 1,...,n, where n is the number of features. Labeling of the training
data is performed by evaluating whether cost-effectiveness is above or below a fixed
threshold, assuming it is a discrete variable. Formally, let y; € {0,1},i =1,...,n
be a label corresponding to the feature vector x;, where 1 corresponds to CONSUME
and 0 to SAVE. The data is then divided into training and validation set.

Two classifiers are studied: (i) logistic regression and (ii) neural network. The
former is chosen for its non-linearity and learning efficiency since it directly learns
posterior probabilities P(y; = 1|z;). Given the optimization scope, ridge regular-
ized logistic regression [12] is used that minimizes the following cost function:

N - T
min 54 ﬁ+07;10g(exp(—yz($i B+1))+1), ()
where [ is a d-dimensional weight vector, b is the bias and C' is the regularization
strength parameter. Ridge regularization favors low values in 3 for irrelevant fea-
tures and is chosen for its stability of the solutions and computational efficiency over
L1 regularization, which favors a sparse weight vector 3. Learning is performed via
stochastic gradient descent. Let the learned weight vector 5* minimize Equation 1
and # € R? be a new feature vector from the validation or test set. The probability
of 2 belonging to the class CONSUME for § = 1 is given as follows:

1

[+ exp(—(@ 5 + 7))
If P(§ = 1]Z) < 0.5, a node saves resources by consuming By,. Otherwise, it ex-
pands the resource consumption to By;. The logistic regression classifier is general-
ized to a Multi-Layer Perceptron (MLP) neural network, by adding h hidden layers,
each with [;, ¢ = 1,...h hidden nodes. The activation function in the hidden layer
is the ReLU function, chosen for its simplicity, ease of computation and reduced
likelihood of vanishing gradients [9]. Learning is performed via backpropagation.

Both classifiers are validated on the validation set and then tested during the
decentralized system runtime. The trained classifier is integrated into each node as
a black box. It receives as input the locally estimated aggregates and provides as
output the resource utilization that is the communication rate at each epoch.

P(j=1]7) =

(@3]

3.2 Self-adaptive strategies

The self-adaptive strategies are data-independent heuristics that predict cost-effecti-
veness by monitoring local system parameters, for instance, counting the number of
nodes with which sensor data are exchanged. This measurement encodes both the
(i) communication cost and (ii) aggregation accuracy. As the counter increases, a
larger portion of the network receives the latest sensor data and estimations are more
accurate. Therefore this counter can regulate resource allocation: a node joining the
network or having new sensor data to share begins with a communication rate of By,
to minimize the time operating with low accuracy. As the number of data exchanges
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with different nodes increases, the communication rate decreases to save resources
and eventually becomes B, when data are disseminated to all nodes of the network.

Formally, let r§t) € [0,1] define the relative remaining communication cost that
is required for a node j at epoch ¢ to exchange the sensor data with all nodes in the
(t)
)
J

network. Next assume a function f(r; ") that calculates the allocated resources such

that By, < f (r](-t)) < By . This paper studies the following functions:

Table 2: Functions used by the self-adaptive strategies.

Function Name Function a
Linear Br+a-r-By BUB:]BL
Exponential Bp — 1+ e>TBu %
Square Root Br++a-r By %
Logistic Regression By — % Parameters smoothly covering [By,, By]

These self-adaptive strategies do not require data labeling and offline training. On
the contrary, they assume apriori an exact relation between the relative remaining
communication cost and the allocated resources.

4 Applicability on Decentralized Sensing

The optimization strategies are applied on DIAS', the Dynamic Intelligent Aggrega-
tion Service. DIAS is a generic and highly dynamic service for fully decentralized
and real-time computations of aggregation functions: Each DIAS node can share
(data provider) and aggregate (data consumer) sensor data. DIAS can adapt and self-
correct computations to improve accuracy under changing sensor data [18] or nodes
joining and leaving the network [17, 16]. A large family of aggregation functions,
e.g. summation, average, maximum, minimum, count, standard deviation, etc., can
be computed without any change in the core distributed algorithm.

DIAS nodes discover each other and disseminate their sensor data updates via
the gossip-based peer sampling service [11]. Each node periodically updates its par-
tial view that is a list of limited size ¢ with randomly populated descriptors of other
nodes containing the IP address, the port number and other application-level infor-
mation. The HEALING and SWAPPING gossip parameters determine the features of
the discovered nodes: the latest nodes joined the network vs. random ones.

Real-time aggregation of highly violatile data is feasible in DIAS using the model
of possible states. Let P; = (p;j.,)*_, be a sequence of k possible states generated
by a node j using, for instance, historical sensor data [19]. For instance, smart meter
power data can be abstracted by numerical representations corresponding to the low,
medium and high consumption level. Moreover, let sg € P; be the local selected
state of node j at epoch ¢ that is the input in the aggregation functions of other

! Available af http://dias—net.org (last access: May 2018)
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remote nodes. Sensor data exchanges are performed within an aggregation session
between an aggregator and a disseminator, locally or in two remote nodes. A node
has a disseminator, an aggregator or both. The latter scenario is the most demanding
one in terms of computational and communication resources. The disseminator ini-
tiates the aggregation session and sends its selected state s; to the aggregator. The
aggregator classifies it as a new input value, i.e. fist performed aggregation session,
or as a replacing input value, i.e. an earlier aggregation session has been performed
with another outdated selected state. The aggregator completes the aggregation ses-
sion by sending an acknowledgment and the outcome back to the disseminator.
Aggregation accuracy improves by counting a new selected state or updating an
outdated one. Any other scenario, i.e. duplicate selected states, is excluded using
a distributed memory system based on probabilistic data structures, the bloom fil-
ters [4]. The memory system consists of two nested bloom filter layers as shown
in Figure 2: (i) the interactions layer verifies whether an aggregation session be-
tween an aggregator and a disseminator has been earlier performed while (ii) the
data layer validates which latest selected state has been aggregated. Dissemina-
tors use the memory system to determine whether an aggregation session should be
performed with an aggregator sampled from the gossiping service. The exact algo-
rithms are out of the scope of this paper and can be found in earlier work [18, 17, 16].

DISSEMINATOR

AGGREGATOR

NODE INTERECTIONS

8 “ > 8 MEMORY

IDENTIFICATION LAYER
AGGREGATOR IDs DISSEMINATOR IDs
PER POSSIBLE STATE

STATE DATA

e > 8 MEMORY
IDENTIFICATION LAYER

SELECTED STATE IDs

AGGREGATOR IDs

Fig. 2: The DIAS distributed memory systems with two nested layers of bloom
filters: (i) Interaction layer - tracks the involved disseminators and aggregators of
the aggregation sessions. (ii) Data layer - tracks the exchange of selected states.

Cost is measured by the total number of exchanged messages per epoch orig-
inated by the aggregation sessions. The effectiveness of DIAS at each epoch ¢ is

. . (T .
measured by the average estimation error S J( ) of summation over N nodes, assum-
ing each node has an aggregator:

6<t>:lZN:|
N

Jj=1

& N
Sj(t) B Zv:l Sgt)‘
Sl
(t)

where S ](t) is the estimated sum by each node j and Ziv:l sy’ is the actual sum of
all selected states. The aggregation function of summation is chosen as it is the most
sensitive one to changes in cost-effectiveness, i.e. possible states. Recall from Fig-

3)

ure 1 that Zf}vzl sg,t) is the baseline performance calculated via differential privacy
schemes [7] to prevent leaking of the individual selected states to a third party.
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The number of initiated aggregation sessions b§t) for each node j and epoch ¢, i.e.
communication rate, is the system parameter (control variable) that regulates cost-
effectiveness and the one controlled by the optimization strategies. Instead of fixing
b;t) for all nodes, the strategies vary b§t) in the flexibility range [Br, By], where
Bj, = 0 determines no performed aggregation sessions (saving resources), whereas
By = cimproves accuracy by maximizing? the number of aggregation sessions.

4.0.1 Optimization stratagies in decentralized sensing

Machine learning strategies: Training is performed by varying in multiple test runs
(i) the number of aggregation sessions and (ii) the possible states as well as the se-
lected state of the nodes (different datasets). This process generates a 5-dimensional
vector with the following metrics: (i) test run identifier, (ii) epoch number, (iii) num-
ber of aggregation sessions, (iv) average estimation of the sum over all nodes and
(v) slope of this sum based on a time window of 5 epochs. The average estimation
of the sum at epoch ¢ is calculated as % Zjvzl SJ(.t), where S’J(-t) is the estimation of
the sum by node j at epoch ¢. The slope of the sum quantifies the dynamics of the
selected states, i.e. changes performed during a test run:

N &7
5o _ Varly Xim S =t -1, — 4]

Var[rltr =t,t —1,...,t — 4]

The optimizer labels each feature vector using the average estimation error
(Equation 3). If the error is below a fixed threshold, it is labeled as SAVE, other-
wise, CONSUME. These labeled data are then used to train the classifier.

During the testing phase, each node j at epoch ¢ — 1 uses the classifier to de-

termine the number of aggregation sessions b;t) at epoch ¢. No interactions are re-

quired between nodes and optimizer. Autonomy and decentralization are preserved.
The test feature vector generated online during system operation contains the local

“)

sum estimation S ](t) and the slope of this estimate instead of the average sum esti-
mation and its slope over all nodes. The number of aggregation sessions are set to
plttt) — By if the classifier determines CONSUME or bgtﬂ) = By if SAVE.
Self-adaptive strategies: At each epoch ¢ — 1, a disseminator j counts the aggre-
gators Q;til) that have aggregated its current selected state sg-tfl). If the selected
state changes, the counter sets back to zero. The count aggregation function of DIAS

provides an estimate of the total number of aggregators N ;til) ateach epoch t — 1

that is IV if all nodes have an aggregator. The relative remaining aggregation ses-
(t=1)

sions r; initiated by a disseminator j at epoch ¢ are calculated as follows:
(=1
W _ -0y _ g 9
b;” = f(r; )_1_W7 5

J

2 By = c assumes that gossiping updates the view at least once per epoch.
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where rj(t_l) € [0, 1] is fed in one of the functions of Table 2. The higher the rate of

changes in the selected state, the higher the rj(-t_l).

5 Experimental Evaluation

DIAS and the peer sampling service on which DIAS relies on are implemented?
in Java using the Protopeer distributed prototyping toolkit [8]. Training data are
collected by deploying simulation test runs in the CSCS supercomputing infras-
tructure*, while DIAS is deployed in the Euler HPC cluster infrastructure® of ETH
Zurich for execution of the testing phase and evaluation of the cost-effectiveness.

Real-world data from the Electricity Customer Behavior Trial project® are used
for aggregation by DIAS. The data were collected in 2009 and 2010 (364 days) and
concern the electricity consumption of 3000 residential consumers. They contain
30-minutes records of the power consumption. The possible states of each dissemi-
nator are the cluster centroids computed by k-means using Weka’, with k = 5. The
dataset is randomly divided into two sets: 80% for training and 20% for testing.

The following parameters are used for the simulation test runs: 3000 nodes, 800
epochs, view size ¢ = 50, a HEALING of 1 and a SWAPPING of 24. Each experiment
runs with a fixed maximum number of aggregation sessions among the following
values in different experiments: {5, 15, 20, 30, 40, 50}. Therefore, a total number of
6 sessions * 364 days = 2184 experiments are performed for training.

Each feature vector is labeled with 1 (CONSUME) if ¢(*) > 0.1 and with 0 (SAVE)
otherwise. The labeled feature vectors are fed into the two classifiers from scikit-
learn®. The logistic regression uses the ’sag’ solver and regularization strength of
C = 0.5. The multilayer perceptron has h = 2 hidden layers with [y = 6 and [y = 3
hidden nodes. Learning rate is constant and equal to 0.001. Training is performed
without regularization using the ’1bfgs’ solver from the quasi-Newton family meth-
ods. Both classifiers are validated” on the training set. The trained classifiers are
then integrated into each DIAS node by importing the weight vectors and biases.

During testing phase for Day 199, the flexibility range of [B, = 10, By = 40]
is used by each node j to determine the number of aggregation sessions b;t) for

3 https://github.com/epournaras/DIAS and https://github.com/
epournaras/PeerSamplingService (last access: May 2018)

4https://www.cscs.ch (last access: May 2018)

Shttps://scicomp.ethz.ch/wiki/Euler (last access: May 2018)

6 http://www.ucd.ie/issda/data/commissionforenergyregulationcer/

(last accessed: May 2018)

Thttps://www.cs.waikato.ac.nz/ml/weka/ (last access: May 2018)
8http://scikit-learn.org/stable/ (last access: May 2018)

9 Linear regression has an average precision, recall, fI-score of 0.8 and 0.96 for neural net-
work. 273662 occurrences appear for SAVE and 123557 for CONSUME in linear regression.
The respective occurences are 274108 and 123111 for neural network. Validation metrics docu-
mentation: http://scikit-learn.org/stable/modules/generated/sklearn.
metrics.precision_recall_ fscore_support.html (last access: May 2018).
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both machine learning and self-adaptive strategies. The range [B;, = 20, By = 40]
is also evaluated for the machine learning strategies. Figure 3a illustrates how b§t)
is determined by the self-adaptive strategies and also shows the actual summation
estimated by each node during the testing phase.
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Fig. 3: Testing phase: Calculation of the aggregation sessions by the self-adaptive
strategies and the actual summation estimated by each node.

The strategies are evaluated by comparing their cost-effectiveness against a fixed
number of aggregation sessions for all nodes. This number is calculated by the aver-
age number of aggregation sessions observed in the compared optimization strategy.
The former case is indexed with O and the latter with F. Comparison measurements
are made in terms of performance improvement defined at each epoch ¢ as follows:

g) 0 = o) =g, (©)

where v is the communication cost m or the estimation error e. Similarly, the mean
relative performance improvement over the DIAS runtime is introduced as follows:

g(v) = - Ti 90 100 )
= Tmaa: - Tm,in +1 =T . '(:t) o

where v is the communication cost m or the estimation error € and T,,,, = 800,
Tonin = 101, excluding the first 100 epochs used for system bootstrapping.

5.1 Experimental results

Figure 4 illustrates the mean relative improvement of the optimization strategies.
The following observations can be made: The logistic regression with the narrower
flexibility range of [B;, = 20, By = 40] is the only strategy that achieves to de-
crease both the estimation error by 7.15% and the communication cost by 4.96%.
The other strategies show two opposing trade-offs. The neural networks increase the
estimation error by 12.35% on average but decrease communication cost by 7.37%
respectively. In contrast, the self-adaptive mechanisms decrease the estimation error
by 8.18% on average but increase communication cost by 11.25% respectively.
Figure 5 illustrates how performance improvement varies over runtime. The fol-
lowing observations can be made for the estimation error in Figure 5a and 5b: The
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Fig. 4: Mean relative performance improvement of the optimization strategies.

machine learning strategies and especially the logistic regression maximize the de-
crease of the estimation error during epochs 131 to 281 during which a significant
change in summation is observed (Figure 3). The self-adaptive strategies manage to
maintain the improvement during the next epochs in contrast to the machine learning
strategies that fall into a performance deterioration during epochs 281 to 800.
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Fig. 5: Performance improvement of the optimization straegies over system runtime.

Figure 5c and 5d show the improvement of the optimization strategies in commu-
nication cost along with Figure 6 that shows the number of aggregation sessions for
each node over runtime. The machine learning strategies and especially the logistic
regression consume a high number of messages during the first epochs in which
large changes in the summation are observed. In this way they manage to decrease
the estimation error during this period. During epochs 327 to 800, all machine learn-
ing strategies reduce communication cost and as a consequence they do not capture
the increase of summation. This justifies the negative improvement in the estima-
tion error. The self-adaptive strategies decrease the estimation error by sacrificing
communication cost, with the exponential function providing the best trade-off.

6 Conclusion and Future Work
This paper concludes that the optimization of cost-effectiveness in decentralized

systems is feasible using machine learning without violating privacy. This is made
possible by introducing a novel training scheme that relies entirely on aggregate
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Fig. 6: The selections of the aggregations sessions by the optimization strategies.

data collected in a privacy-preserving way, while testing is locally performed in
each node of the network using local data. A linear regression classifier manages
to improve both accuracy and communication cost in an application scenario of
decentralized sensing using real-world Smart Grid data, while the neural network
classifier shows a trade-off: lower accuracy but higher savings in communication
load. The opposite trade-off is observed in the self-adaptive strategies.

Future work includes the linking of the validation performance with the test-
ing performance of the decentralized network as well as performance comparisons
with with the other two design options of Table 1. The feasibility of deep learning
and other machine learning techniques empowered by cooperative data forwarding
strategies is subject of future work as well.
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