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Abstract

Big data collection practices using Internet of Things (IoT) pervasive technologies are often
privacy-intrusive and result in surveillance, profiling, and discriminatory actions over citizens
that in turn undermine the participation of citizens to the development of sustainable smart
cities. Nevertheless, real-time data analytics and aggregate information from IoT devices
open up tremendous opportunities for managing and regulating smart city infrastructures
in a more efficient and sustainable way. The privacy-enhancing aggregation of distributed
sensor data, such as residential energy consumption or traffic information, is the research
focus and challenge tackled in this paper. Citizens have the option to choose their privacy
level by reducing the quality of the shared data at a cost of a lower accuracy in data analytics
services. A baseline scenario is considered in which IoT sensor data are shared directly with
an untrustworthy central aggregator. A grouping mechanism is introduced that improves
privacy by sharing data aggregated first at a group level compared to a baseline scenario
in which each individual shares data directly to the central aggregator. Group-level aggre-
gation obfuscates sensor data of individuals, in a similar fashion as differential privacy and
homomorphic encryption schemes, thus inference of privacy-sensitive information from single
sensors becomes computationally harder compared to the baseline scenario. The proposed
system and its generic applicability are evaluated using real-world data from two smart city
pilot projects. Privacy under grouping increases, while preserving the accuracy of the base-
line scenario. Intra-group influences of privacy by one group member on the other ones are
measured and fairness on privacy is found to be maximized between group members with
similar privacy choices. Several grouping strategies are compared. Grouping by proximity
of privacy choices provides the highest privacy gains. The implications of the strategy on
the design of incentives mechanisms are discussed.
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1. Introduction

Cyber-physical smart city infrastructures,
such as smart grids and traffic systems, are
becoming more and more data intensive. Op-
erational services over such complex infras-
tructures require the collection and aggrega-
tion of citizens’ data [26], e.g. total power
demand for preventing blackouts or average
speed of vehicles for mitigating traffic con-
gestion. On the one hand, aggregation over
citizens’ sensitive data raises concerns about
privacy [49]. On the other hand, these data
have a great potential to improve the perfor-
mance and sustainability of smart cities [21,
57]. Therefore, privacy-enhancing aggrega-
tion mechanisms can play a paramount role
in the development and adoption of data in-
tensive smart city applications.

In the scenario studied in this paper, col-
lective sensing is required to provide a ser-
vice. Assume a population of Internet of
Things (IoT) sensors, referred to as data sup-
pliers, that are associated with or owned by
citizens, e.g. smart meters, smart phones,
wearables. Data suppliers disclose their mea-
surements to a planner, a system operator or
another smart city actor that is referred to
as data consumer. The data consumer ex-
ecutes a data analytics algorithm in order
to make collective measurements available –
i.e. computing aggregation functions such
as the summation, average, maximum, top-
k, etc. Its interest is to provide high qual-
ity of service in terms of high computational
accuracy. The data consumer is assumed to

Pournaras)

be honest but curious [29] i.e. it may run
privacy-intrusive algorithms on the data re-
ceived from data suppliers to infer, for in-
stance, daily routines and habits, identity of
appliance owners, health status, for the pur-
pose of personalized pricing and/or advertis-
ing. In the context of smart cities, honest
but curious data consumers may correspond
to actors that use citizens’ data to serve cor-
porate interests, to profile/discriminate cit-
izens [77], or increase political influence and
power, for instance by nudging. This scenario
is also relevant as a public goods game: dis-
closing data to the data consumer entails a
privacy cost for the citizen, and at the same
time it improves the service, providing every
citizen with a benefit [43, 14]. A trade-off
between privacy and accuracy is empirically
observed in earlier work [62].

This paper introduces the Internet of
Things Privacy-enhancing Group Aggrega-
tion (IoT-PGA) mechanism. IoT-PGA in-
creases the individual privacy of data suppli-
ers, while preserving a certain level of service
quality. The proposed mechanism is bottom-
up, i.e. it can be applied without requiring
the collaboration of the data consumer, in
contrast to top-down approaches that require
key management systems, e.g. homomorphic
encryption [24, 20]. Earlier work introduces
different ways of increasing privacy in IoT
networks in a bottom-up way: by decreas-
ing the quality of the data, e.g. by reducing
its granularity [60], by obfuscation [2] or by
adding noise [19]. This paper looks at a new
way of increasing privacy: changing the phys-
ical or logical organization of the network by
varying the topology, i.e. by grouping data
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suppliers. Note that this is an open challenge
identified in earlier work [33]. Grouping is
a complementary approach to other existing
bottom-up privacy-preserving mechanisms in
the sense that the underlying performance of
the mechanism can be enhanced via grouping
[45, 23].

The general applicability of IoT-PGA is
empirically studied and evaluated using real-
world data from two smart city pilot projects
that concern the following two application
scenarios:
Mitigation of traffic congestion: Assume
a city planner who manages a data consumer
for the collection and the analysis of traf-
fic data, such as GPS and velocity traces,
in order to reduce traffic congestion, to im-
prove commute times and to design any fur-
ther infrastructural expansion required [73].
The data consumer is interested in the pre-
cise locations in which traffic is the slowest,
so it requires high accuracy in data analyt-
ics. On the contrary, data suppliers may
not be willing to disclose their precise lo-
cation and speed, which could reveal sensi-
tive information, e.g. infractions of the traf-
fic laws, information about time and path
of the daily commute. In this scenario, the
IoT-PGA mechanism is applied to real-world
data from the Regional Transportation Com-
mission of Southern Nevada (RTCSNV), con-
taining GPS traces of cars [10].
Optimization of power consumption:
Assume an energy utility company that plays
the role of a data consumer. It collects and
analyzes the energy consumption of residen-
tial customers in order to optimize energy
prices and power grid usage via load reduc-

tion or load shifting [51, 58]. Residential
consumers might not wish to disclose their
consumption history in detail as it might re-
veal sensitive information, such as house oc-
cupancy and residential activities [30]. Real-
world data are used from the Electricity Cus-
tomer Behavior Trial with residential power
consumption records [9].
The illustration of both application scenarios
unfolds more universal insights on privacy for
smart cities that are relevant beyond domain
experts: the future smart city policy makers
tackling a highly inter-disciplinary and data-
driven policy-making, i.e. inter-dependent
infrastructural networks. The proposed sys-
tem does not require infrastructural interven-
tions when applied to the information sys-
tems supporting application services and in
this sense, it is highly relevant for service
providers such as power utilities companies.
In contrast, integration in the control in-
frastructure requires interoperation with the
physical infrastructure of system operators,
which is out of the scope of this paper.

The main finding of this work is the follow-
ing: when data suppliers physically or logi-
cally organize themselves in groups to aggre-
gate sensor data before sharing them with a
data consumer, the privacy of data suppliers
improves without compromising the quality
of service, i.e. accuracy of the computed ag-
gregation functions. Changing the number of
groups in the system, introducing heteroge-
neous group sizes or assigning arbitrary pri-
vacy choices to data suppliers, does not influ-
ence the main finding: individual privacy in-
creases and accuracy remains constant. Nev-
ertheless, all of these variables affect the effi-
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ciency of the method, thus the effect of differ-
ent parameter configurations at the popula-
tion level and at the group level are studied.
Finally, several grouping strategies are com-
pared. Grouping data suppliers according to
their individual privacy choices is found to
be the strategy that offers the highest level
of privacy. Implications of these results on
incentive mechanisms are discussed.

The contributions of this paper are sum-
marized as follows:

• A new bottom-up approach for enhanc-
ing privacy by changing the network
topology, i.e. grouping data suppliers,
without reducing the accuracy of aggre-
gation.

• New privacy and accuracy metrics in the
group setting.

• Measured trade-offs between privacy and
accuracy for networks performing group-
level data sharing.

• Different grouping strategies and trade-
offs comparisons between privacy and ac-
curacy.

• A proof-of-concept on two real-world
smart city datasets, confirming the gen-
eral applicability independently of the
type of input data used.

The rest of the paper is organized as fol-
lows: In Section 2 the proposed model is in-
troduced, together with the measures of ac-
curacy and privacy. Section 3 outlines the ex-
perimental methodology, a discussion of de-
sign choices, and the datasets used in the ex-
periments. Section 4 discusses the results of

the experiments. Section 5 summarizes the
results, their implications for system and pol-
icy design and possible directions for future
work. Section 6 illustrates related work and
positions this paper to literature. Finally,
Section 7 concludes this paper.

2. Privacy-enhancing Grouping

Table 1 illustrates the mathematical nota-
tion used in the paper, listed in the order they
appear in the text.

Table 1: Mathematical notation.

Math symbol Description
G = (I ∪ {A}, E) the network graph
I the set of n data suppliers
A the data consumer
E set of network connections
Te number of measurements for

epoch e
ri,e,t record of raw data of supplier i

at epoch e and time t
Ri,e raw data of supplier i in epoch e
R the domain of the raw data
α aggregation function
fS : RTe → STe summarization function
si,e,t record of summarized data
Si,e summarized data of supplier i at

epoch e
S the domain of the summarized

data
εe,t local error at epoch e and time t
εe,t global error at epoch e and time

t
G ⊆ I a group of data suppliers
m the number of groups
αG
e,t intra-group aggregation
a, a1, a2 data suppliers
εGe,t local group error for group G
εGe,t total group error for group G
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This paper studies a collective sensing sys-
tem, for smart cities and beyond, consisting
of n data suppliers and a single data con-
sumer, which is in charge of computing statis-
tical information, i.e. aggregation functions,
on the data generated by the data suppliers.

The system is a graph G = (V,E), where
V = I ∪ {A}, I = {1, . . . , n} is the set of
data suppliers, A is the data consumer and
E = {ei,j : ∀i 6= j ∈ V } is the set of con-
nections between data suppliers. The data
consumer is assumed connected to all data
suppliers, i.e. E ⊇ {ei,A,∀i ∈ I}. Data
suppliers are also connected with each other
in non-overlapping groups formed by network
(self-)organization algorithms [36, 64]. Each
supplier in the group can interact to each
other group member through a communica-
tion network such as the Internet, either as-
suming a fully connected network, e.g. via
a lookup server for this purpose, or via dis-
tributed routing protocols, e.g. gossiping
communication [38].

The aggregation functions are computed at
each epoch, e.g. each day. Each data sup-
plier produces Te measurements during epoch
e, one for each time step 1 ≤ t ≤ Te, e.g.
every hour. The sequence of measurements
produced by data supplier i during epoch e
is defined as Ri,e = (ri,e,t)

Te
t=1, r ∈ R. These

data are referred to as raw data and they are
treated as privacy-sensitive information. The
data consumer collects individual measure-
ments and uses them to perform data anal-
ysis with an arbitrary algorithm α, referred
to as aggregation function, for instance, the
average, i.e. α(X) = E(X), and the sum, i.e.
α(X) =

∑
(X).

The data consumer is assumed honest but
curious [29]: an adversary that passively
collects privacy-sensitive data about citizens
and can perform privacy-intrusive operations
over these data. For this reason each mea-
surement shared to the data consumer entails
a privacy cost for the citizen, which should be
minimized. Data suppliers increase their pri-
vacy by applying a summarization function
fS to the data before sharing. The summa-
rization function fS : RTe → STe transforms
a vector of T values in the domainR to T val-
ues in the domain S. By definition |S| ≤ |R|:
the number of possible discrete values in S
is lower than the number of possible discrete
values in R.

The summarization function obfuscates,
i.e. reduces the quality of, the information
shared to the data consumer, by reducing the
granularity of data, in order to make it com-
putationally harder to infer characteristics of
the raw data. The obfuscated data are re-
ferred to as summarized data and defined as
Si,e = fS(Ri,e). The summarization level of
a data supplier is defined as 1/|S|. A higher
level of obfuscation corresponds to a lower |S|
meaning higher privacy for the data suppliers
but lower accuracy in the aggregation.

In the scenario of power consumption, ob-
fuscation can be applied by reducing the tem-
poral granularity of the smart meter read-
ings, by either reducing the frequency of mea-
surements or by computing the average load
across measurements. In the traffic scenario,
obfuscation can be implemented by decreas-
ing either the spatial granularity or the tem-
poral granularity of location reports.

This paper makes use of privacy and accu-
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racy measures from earlier work [60], which
are general enough to be applied to different
aspects of the smart city application scenar-
ios. A discussion of these measures is pre-
sented in Appendix I. Privacy is measured by
the local error that is defined as follows:

εe,t =
1

n

n∑
i=1

εi,e,t; εi,e,t =
|ri,e,t − si,e,t|
|ri,e,t|+ |si,e,t|

, (1)

where each term is the difference between
the raw and summarized data of supplier i.
A higher local error provides higher privacy.
Note that the local error does not depend
on the aggregation function. Accuracy, mea-
sured by the global error is defined as follows:

εe,t =
|α(Re,t)− α(Se,t)|
|α(Re,t)|+ |α(Se,t)|

, (2)

which is the average difference between the
raw data Re,t = (ri,e,t)

n
i=1 and the summa-

rized data Se,t = (si,e,t)
n
i=1 collected by the

data consumer. A higher global error corre-
sponds to lower accuracy.

2.1. Grouping

So far data suppliers are assumed to trans-
mit their summarized values directly to the
data consumer. This setting corresponds to a
centralized organization (Figure 1), in which
the aggregation is performed at a central
level. The equivalent of distributed aggre-
gatio [37, 59] is a setting where data suppli-
ers are (self-)organized [36] in groups within
which they perform local aggregation in a
privacy-preserving way [72, 50] (Figure 2a).

Groups in a smart city scenario may corre-
spond to sets of citizens or devices that are
in some close proximity that is measurable,
for instance, via the Euclidean distance. An
example of a proximity measure is physical
proximity, where groups could contain neigh-
bouring households connected to the same
smart-grid infrastructure e.g. sharing power
feeders, plants [61] or smart meters. Groups
may also represent citizens waiting at the
same crossroad or riding the same public
transport vehicle [70]. The physical prox-
imity though may not be a practical option
when it rapidly varies. Alternative grouping
criteria that cover the connectivity of IoT de-
vices can be applied to create virtual groups,
e.g. software defined networks [44] or over-
lay networks [46]. An integration of grouping
strategies in the power software infrastruc-
ture of the power grids is out of the scope of
this work, yet it is feasible as earlier shown
for the applicability of multi-agent systems
in the SCADA systems of power grids [11].
An example of a grouping criterion not based
on physical constraints is semantic proxim-
ity, where groups could be formed according
to some similarity between users such as the
type of energy demand e.g. residential vs in-
dustrial, the final destination of the journey,
or social network similarity e.g. participating
to the same online communities.

A group G is defined as a set of data
suppliers in I that are connected with each
other:
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Data	consumer
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R1
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R4

Data	suppliers

S1 S2 S3 S4

Figure 1: An illustration of the model for four data
suppliers. In this setting the data consumer computes
α(S1,e, ..., Sn,e) = α(fS(R1,e), . . . , fS(Rn,e)).

G 6= ∅ ⊆ I : ∀i 6= j ∈ G ∃ei,j ∈ E︸ ︷︷ ︸
pairwise connected data suppliers

Data suppliers are assumed to have a chan-
nel for secure communication with other data
suppliers, such that a malicious eavesdropper,
e.g. the data consumer, cannot know or in-
fer the content of the information exchange.
For example, group communication could be
encrypted or could be performed over a sep-
arate network, e.g. a peer-to-peer Bluetooth
network, to which the eavesdropper does not
have physical access [75].

Data suppliers have the option to cooper-
ate with the members of their group to in-
crease their privacy: every group elects a
data consumer that computes the aggrega-
tion function α using the group data, before
sharing them to the central data consumer
(Figure 2a). For convenience of notation, the
output of the data consumer within group G,
i.e. the aggregation over the data of each data
supplier, is denoted as αG

e,t := α(si,e,t,∀i ∈
G).

G2G1

𝛼(𝑆$, 𝑆&, 𝑆', 𝑆()

Data	consumer

1

R1

2

R2

3

R3

4

R4

Data	suppliers

𝛼(𝑆$, 𝑆&) 𝛼(𝑆', 𝑆()

S1 S2 S3 S4

Local	data	consumer Local	data	consumer

(a) Hierarchical organization. Each local aggre-
gator transmits the locally-aggregated data to
the consumer.

G2G1

𝛼(𝑆$, 𝑆&, 𝑆', 𝑆()

Data	consumer

1

R1

2

R2

3

R3

4

R4

Data	suppliers

𝛼(𝑆$, 𝑆&) 𝛼(𝑆', 𝑆()

S1

S2

S3

S4

(b) Equivalent distributed organization. Each
supplier transmits a fraction of the locally-
aggregated data such that the aggregation at the
consumer level of the group reports produces the
locally-aggregated data.

Figure 2: An illustration of a collaborative
intra-group aggregation for improving privacy-
preservation. In this setting the data consumer com-
putes αe,t(αe,t(G1), ..., αe,t(Gn)), where Gi is the lo-
cal aggregated data generated by group i.

The election of a data consumer at a group-
level can be performed via distributed elec-
tion protocols [40] in the hierarchical scenario
(Figure 2a). An alternative approach is a
more distributed information exchange (Fig-
ure 2b) in which every data supplier within a
group can play the role of data consumer and
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send 1 the mean value of the computed ag-
gregation function αG

e,t/|G|. The summarized
data used as input in the aggregation reach
every group member via network communi-
cation by means of a routing protocol, e.g.
[37, 56], at either the network layer or at the
application layer [54]. Both the aggregation
function and the group size can be computed
in a distributed fashion [37, 59] using such
protocols.

Given that each group-level data con-
sumer computes the same aggregation func-
tion computed by the central consumer, the
output of the aggregation function in each
scenario is expected to be equivalent: aggre-
gating the supplier data directly or aggregat-
ing the data that the group-level data con-
sumers earlier aggregated. This aspect is em-
pirically studied in Section 4.

2.1.1. Privacy cost
If data consumers at a group-level are

not assumed to be honest-but-curious, for
instance groups built based on a level of
trust [64], then the privacy cost at the group
level is minimized. If local consumers are as-
sumed to be honest-but-curious, then the pri-
vacy problem moves from the central to the
group level. Countermeasures for decreas-
ing the privacy cost in this case is the fre-
quent change of (i) groups and (ii) elected
data consumers that share group-level data
in the hierarchical scenario. In this way, each
data supplier is limited to coarser accumu-

1This equation might change depending on the
chosen aggregation function.

lated data about its group [76, 18].

2.1.2. Local group error
The data aggregated at a group-level are

computed from the summarized data of the
group members. Compared to the baseline
scenario, it is computationally harder for the
central aggregator to infer the raw data of
each data supplier using the data aggregated
at a group-level. As experimentally con-
firmed in Figure 10, for any given summa-
rization level 1/|S|, the local error, i.e. the
privacy, of data suppliers in a group is higher
when data suppliers summarize and share
their data directly with the central data con-
sumer.

Group-level aggregation has two phases:
(i) exchange of summarized data within the
group and (ii) exchange of aggregated data at
a group-level with the central data consumer.
In the first phase, the local error measures
the privacy cost for sharing summarized data
with other group members. It is equivalent to
the local error in the case of having no groups
(cf. Equation A.4). In the second phase, the
local group error is introduced computed by
the difference between the raw data and the
result of the group-level aggregation:

εGe,t =
|ri,e,t − αG

e,t|
|ri,e,t|+ |αG

e,t|
, i ∈ G. (3)

Note that the local group error becomes
equivalent to the local error εGe,t = εe,t if Gj =

{j} ⇒ α
Gj

e,t = Sj,e,t ∀j : 1 ≤ j ≤ n i.e. each
individual becomes its own group.
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2.1.3. Total group error
The total group error measures the differ-

ence between the summarized data and the
data aggregated at a group-level.

εGe,t =
∑
i∈G

|si,e,t − αG
e,t|

|si,e,t|+ |αG
e,t|
. (4)

In contrast to the local group error that
measures the privacy gain of the data supplier
by being member in a group, i.e. the differ-
ence between the supplier’s raw data and the
group-level aggregated data, the total group
error measures the overall privacy within a
group, i.e. the difference between the sum-
marized data shared within the group and the
group-level aggregated data shared out of the
group, to the central data consumer. If the
group-level aggregated data and the summa-
rized data of a group member are similar, it
is easier for the data consumer to infer infor-
mation about the data suppliers.

2.1.4. Global error
Compared to the baseline scenario, group-

ing to m disjunct groups results in the same
global error in the following cases: (i) in sum,
due the the associative property and (ii) in
mean due to the property of the grand mean
for which Ee,t(Ee,t(G1), . . . ,Ee,t(Gm)) =
Ee,t(Se,t) under groups of the same size.

In contrast, accuracy of the grouping mech-
anism varies from the accuracy of the baseline
scenario if groups have heterogeneous sizes.
In this case data suppliers in groups of lower
size are weighted higher than data suppliers
in larger groups as expressed in Equation 5.
This accuracy difference is empirically inves-

tigated in Section 4.1 for the two smart city
application scenarios.

3. Experimental Methodology

The goal of the experimental evaluation is
to compare the baseline scenario in which
data suppliers send summarized data directly
to the data consumer with the grouping sce-
nario in which data suppliers form groups
whose maximum size is defined by the pa-
rameter N . Note that varying the group size
varies also the number of groups, as the pop-
ulation has a fixed size.

In the two compared scenarios two types
of effects are studied: (i) macro-level and (ii)
micro-level. Macro-level effects denote the
changes seen at the population level, e.g. av-
erage privacy, accuracy. Experiments with
varying group sizes, and thus varying number
of groups, are performed while the summa-
rization levels are kept constant during each
experiment. Group sizes are sampled at the
start of each experiment from distributions
with parameter N : (i) a uniform distribution
from 2 to N , (ii) a power law distribution
from 2 to N biased towards lower values, (iii)
a bipolar distribution where 2 and N have
both 50% probability, as well as (iv) a de-
terministic function returning N . Micro-level
effects denote the changes seen at the group
level, e.g. difference in privacy between group
members. Experiments with varying summa-
rization levels and fixed groups size are per-
formed.
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Ee,t(Ee,t(G1), . . . ,Ee,t(Gm)) = Ee,t(

∑|G1|
j=1 sj,e,t

|G1|
, . . . ,

∑|Gm|
j=1 sj,e,t

|Gm|
)

= Ee,t(
s1,e,t
|G1|

, . . . ,
sa,e,t
|Gj|

, . . . ,
s|I|,e,t
|Gm|

).

a ∈ Gj, 1 ≤ j ≤ m

(5)

Given: s1 = s2 = s3 = 10, s4 = 20. (6)

No groups: E(s1, s2, s3, s4) = (10 + 10 + 10 + 20)/4 = 25/2

Same size: E(E(s1, s2),E(s3, s4)) = ((10 + 10)/2 + (10 + 20)/2)/2 = 25/2

Different size: E(E(s1, s2, s3), s4) = ((10 + 10 + 10)/3 + 20)/2 = 15/2

Equation 6: Example of computing the mean for different configurations of groups. If groups have the same
size, the result is equivalent to a simple mean.

3.1. Summarization function

The clustering algorithm k -means with k
clusters is chosen as the summarization func-
tion. Clustering is a versatile machine learn-
ing technique, broadly used in data min-
ing [34]. Clustering can also work as a
privacy-preserving mechanism [42, 55], for ex-
ample it is used to achieve k -anonimity [15]
and t-closeness [67], to improve the efficiency
of a differential privacy mechanism [66] and
to improve privacy of IoT data [59]. Moreover
the concept of clustering maps intuitively to
the idea of information reduction [13]: cen-
troids, representative points of a cluster, sub-
stitute the original values in the cluster, thus
obfuscating the data (see Figure 3). Figure 3
illustrates how a power consumption signal is

obfuscated using k-means clustering.

0 2 4 6 8 10 12 14 16 18 20 22 24
Hours

0.25

0.50

0.75

1.00

1.25

1.50

Po
we

r d
em

an
d 

(k
W

)

Raw data
5 clusters
3 clusters

Figure 3: An example of smart meter reading for user
3182 at day 06.12.2009, showing the effect of cluster-
ing on the signal with 3 and 5 clusters respectively.

IoT-PGA is independent of the summariza-
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tion function, so clustering can be substituted
by any other function that offers better pri-
vacy guarantees, for instance adding Laplace
noise to the group aggregates as in earlier
work [39, 3].

A summarization level of 1/|S| corresponds
to summarization with k = |S| clusters.
Summarization is applied on a sequence of
measurements, e.g. the 48 half-hour power
consumption records of the ECBT data, that
are input to k -means. Clustering divides the
data points into k clusters and returns the
centroids, the representative points that de-
fine each cluster. Once the centroids are ob-
tained, data suppliers generate the summa-
rized data by substituting every point in the
raw data with the representative centroid, the
one at the minimum Euclidean distance, con-
verting a sequence of length |S| with K ≤ |S|
distinct values, to a sequence of the same
length and k ≤ K distinct values. The num-
ber of possible distinct values determines how
high the information content of the summa-
rized data is: If k = K, the raw and summa-
rized data are equivalent. If k = 1 the sum-
marized data contain only one distinct value,
the mean.

3.2. Group formation
The performed experiments start with all

data suppliers having a summarization level
of 1/10. The distribution of summariza-
tion levels gradually varies by randomly pair-
ing data suppliers and moving summariza-
tion units from one member of the pair to
the other. Practically, a fixed number of cen-
troids is transferred within every group, from
one data supplier to the other. Assume two

randomly paired data suppliers, a1 and a2,
with summarization levels 1/k1 and 1/k2. As
a result of this process the first data supplier
could gain k centroids and the second looses
k centroids, ending up with new summariza-
tion levels of 1/(k1 + k) and 1/(k2 − k), or
vice versa with 1/(k1 − k) and 1/(k2 + k).
The experiment is repeated for different dis-
tributions of summarization levels, identified
by their standard deviation: a low standard
deviation corresponds to a population with
uniform summarization levels, whereas a high
standard deviation corresponds to a highly
dispersed population with a large number of
extreme summarization values.

The effect of three different grouping
strategies on the privacy and accuracy is
studied, for different number of groups and
distribution of summarization levels. The
strategies are generic in the context of smart
cities applications in the sense that they do
not rely on the physical proximity as a group-
ing criterion, nor on any critical assumption
in power grids and transport systems. In con-
trast, groups are logically linked within vir-
tual topologies, i.e. overlay networks, that
can be instantiated using information sys-
tems that support an application service,
without changing the control infrastructure.
In other words, grouping is decoupled from
the underlying physical network as no physi-
cal controllers or actuators are defined. This
practice is extensively applied in smart grid
infrastructures [58, 36] and other application
domains. This paper studies the following
grouping strategies:

• Random: At every epoch data suppliers
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are randomly assigned to groups of uni-
form size.

• Data proximity : At every epoch data
suppliers are grouped according to the
similarity between their raw data.

• Summarization proximity : Data suppli-
ers are grouped according to the similar-
ity between their summarization levels.

The strategy of data proximity groups to-
gether citizens with similar measurements,
e.g. all passengers of a vehicle report the
same speed of travel, or neighbors equipped
with similar energy production facilities pro-
duce similar amounts of energy. This strat-
egy can also be used to form semantically in-
terrelated groups in case there are different
types of users, e.g. residential vs. industrial
households, car drivers vs. pedestrians. The
strategy of summarization proximity groups
together citizens who value the privacy of
their data in a similar way. Random grouping
represents a large set of grouping strategies,
whose criterion does not consider either in-
dividual measurement nor individual prefer-
ences, e.g. physical proximity as in cars wait-
ing at the same traffic light. Note that raw
data changes at every epoch as data supplier
receive new measurements, while summariza-
tion choices of each individual are assumed to
be constant across epochs with varying stan-
dard deviation among individuals.

3.3. Smart city datasets
The general applicability of IoT-PGA in

the domain of smart city is validated using
real-world data from two pilot projects of two

critical sectors of cities: (i) energy and (ii)
traffic.

Experiments are performed using the data
of the “Electricity Customer Behavior Trial”
(ECBT) project [9], a collection of electric-
ity consumption profiles of both residential
households and small-medium enterprises, for
a total of 6435 users, collected for a period of
52 weeks from 2009 to 2010. The measure-
ments are collected with a frequency of 30
minutes and aggregated daily. The dataset is
preprocessed to improve its quality, exclud-
ing all data suppliers with less than 95% of
data availability. The polished dataset in-
cludes 68.42% of the original data. Less than
1% of missing data is interpolated.

The same experiments are repeated on the
“NREL Regional Transportation Commission
of Southern Nevada” (RTCSNV) dataset [10],
a travel survey performed in 2014. The
dataset contains the GPS sensor data of the
study, which comprises wearable GPS sensors
for a total of 2293 people. The data cover a
total of three days, and every day has a vari-
able number of measurements (trips). The
average speed of each trip is considered to
be privacy-sensitive information. A measure-
ment is defined as the collection of average
speed values of every trip in a day.

This paper assumes the records in the
dataset to be the ground truth data, mean-
ing that detecting and removing sampling or
malfunction errors is out of the scope of this
work. In any case, such errors increase the
obfuscation level and therefore the privacy of
users as measured in this paper.

The main drawback of the NREL dataset,
compared to the ECBT dataset, is the lower
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number of epochs (3 vs. 365 days) and the
lower number of data suppliers (variable and
lower than 1600 vs. higher than 6000 for
the ECBT dataset). In the ECBT dataset
each epoch has 48 records. In contrast, the
NREL dataset has a variable number of trips
for each data supplier and epoch, therefore
choosing a fixed number of non-overlapping
clusters for every data supplier is not an op-
tion as it may result in a larger number of
clusters than the number of input data points
(see also [1]). One way to overcome this
technical issue is to leave out data suppli-
ers with fewer than k points, given a sum-
marization level of 1/k. Figure 4 illustrates
how the number of suitable data suppliers in
the NREL dataset declines with a decreas-
ing summarization level: the data supplier
population decreases to half at summariza-
tion level of 1/5, and at summarization level
of 1/10 fewer than 200 data suppliers re-
main. Taking this into consideration, all ex-
periments are limited to summarization levels
lower than 1/10, which allow for statistical
purposes a large enough population of data
suppliers.
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Figure 4: Number of data suppliers in the NREL
dataset considered in the experiments for each sum-
marization level.

3.4. Aggregation function
The sum, together with the mean, is part

of a large class of operations that can be com-
puted in a distributed way, therefore the re-
sults are applicable in the context of the de-
centralized group management and aggrega-
tion shown in this paper [59, 37].

The mean is used as aggregation function
in the performed experiments. The sum has
applicability in smart grids, for example when
computing the total load of the network. This
paper focuses on mean as it encodes the sum
given the size of the groups, which makes it
more interesting in the setting where groups
have heterogeneous size (cf. Equation 6).

4. Experimental Evaluation

Figure 5 shows that the local group er-
ror increases by increasing the group size,
while the global error remains constant. The
largest gain in privacy is observed by mov-
ing from no groups to groups of size 2, with
an increase of around 600%, while increasing
the group size even further increases the local
group error around 50% the level for group
size 2. Qualitatively similar results are ob-
tained for different values of summarization
level (cf. different rows of Figure 10). This
result confirms the hypothesis that, given a
global accuracy objective, grouping data sup-
pliers increases privacy against the data con-
sumer.

4.1. Non-uniform grouping
One assumption so far is that all groups

have the same size. This property makes
the aggregation function of average over data
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suppliers (baseline scenario) equals to the
average among the group averages (group-
ing scenario, see discussion in Section 2.1.4),
which ensures that the global error remains
constant under grouping. This assumption
is relaxed by studying different distributions
of group sizes defined by the parameter N ,
which determines the maximum size any
group can take.
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Figure 5: Average local group error and global error
for varying group size. The results are obtained for
a summarization level of 1/10, but they are qualita-
tively similar for different summarization levels.

In the first experiment the group sizes are
chosen uniformly at random between 2 and N
(Figure 6). Results are comparable to fixed
group sizes, in particular there is no change
in the global error.

In the second experiment a bias is intro-
duced towards smaller groups: group sizes are
sampled from a power-law distribution that
generates a higher number of small groups
than large groups. If groups are sampled from
a power law distribution (Figure 7) there is
no distinguishable change in global error, but
there is a decrease of about 10% in the local
group error.

In the third experiment the bias changes to
extreme group sizes: samples are taken from
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Figure 6: Average local group error and global error
for varying group size. Group sizes generated ran-
domly by sampling from a uniform distribution.
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Figure 7: Average local group error and global error
for varying group size. Group sizes generated ran-
domly by sampling from a power law distribution.
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Figure 8: Average local group error and global error
for varying group size. Group sizes generated ran-
domly by sampling from a step function.

a step function that returns either 2 or N
with 50% probability each. In this case, the
global error remains at the same level as in
all previous experiments (Figure 8).

Concluding, this section confirms that
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grouping increases privacy without decreas-
ing accuracy, independently of the group
characteristics of groups. The actual increase
in privacy is influenced though by group char-
acteristics. The latter is further investigated
in Section 4.3

4.2. Inner group dynamics
Data suppliers are grouped in pairs2 with

two members of an arbitrary group denoted
as a1 and a2, and each of them is assigned
with a summarization level between 1 and
1/9. Experiments cover in total 81 combi-
nations of summarization levels. Looking at
the local group error of each data supplier,
the privacy of one data supplier is influenced
by the summarization choice of the other one:
Figure 9a shows that the higher the summa-
rization of a1, the higher its increase of pri-
vacy. The summarization choice of a2 influ-
ences positively the privacy of a1. Further
privacy measures in Appendix I confirm this
observation.

Figure 9b shows the absolute difference be-
tween the local group errors of the two data
suppliers. Both data suppliers have the same
error when they summarize at the same level.
The higher the difference between the sum-
marization levels of the two data suppliers,
the higher the difference between the local
group errors.

Figure 9c shows the trade-off between sum-
marization and accuracy: The higher the
summarization, the higher the global error.

2Further results for groups of size 3 have the same
effect. Due to space limitations they are not shown
in this paper and they are available upon request.
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Figure 9: Errors for varying summarization levels of
a1 and a2 . The y axis shows the summarization level
of a1, the x axis the summarization level of a2.

The plots also reveal that the greatest reduc-
tion in accuracy happens for high summariza-
tion levels, while accuracy is almost constant
for summarization levels below 1/6.

4.3. Grouping as incentivization

So far, experiments show that the privacy
of a data supplier is maximized for high sum-
marization levels, yet it does not vary signif-
icantly for summarization levels lower than
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1/4. Reward mechanisms can steer data sup-
pliers to a regime in which privacy is high
while accuracy is at an acceptable level. A
grouping mechanism can act as an incentive
mechanism by rewarding with group mem-
bership data suppliers that choose to summa-
rize at low levels. The size of the group and
the collective group member choices of the
summarization level influence the final pri-
vacy gain (cf. Figure 5).

The benefit of participating in a group
compared to sharing data directly to the data
consumer is studied in this section. An ex-
periment is performed, in which all groups
have the same size and the summarization
level of all data suppliers is fixed. Figure 10
shows that the average local group error in-
creases with increasing group size, and de-
creases with decreasing summarization level.
Note that the first column in the plots repre-
sents the local group error of data suppliers
in the baseline scenario, i.e. no groups. In
this scenario, the privacy of data suppliers de-
creases with decreasing summarization level,
but there is a group size after which the local
group error, at each summarization level, is
higher than the privacy value of a data sup-
plier summarizing at level 1 (depicted by a
dashed line in Figure 11a). In this case a
data supplier benefits from being in a group
to higher extent for a given group size, even
if it is required to reduce the summarization
level. For example, in the ECBT dataset, a
data supplier summarizing at level 1 in the
baseline scenario increases its local group er-
ror up to around 0.35, while within a group
larger than 5 the local group error increases
up to around 0.4, even when summarizing at

level 1/10.
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Figure 10: Average local group error across groups
for a given group size and a summarization level.

The same effect, though at a smaller scale,
is observed in the NREL dataset (Figure
11b). Grouping does not increase the privacy
of data suppliers above the privacy level they
reach individually, although from the trend in
the data it is reasonable to expect that this
can potentially happen for larger groups3.

Moreover, Figure 11 shows that grouping
has a positive effect on the individual privacy,
regardless of the individual choices on sum-
marization level: the larger the groups the
higher the local group error, for any sum-
marization level. This effect varies across
datasets, but the trend holds. In conclusion
it is feasible to incentivize data suppliers to
summarize at lower levels by means of the
grouping mechanism, but the parameters of
the incentive mechanism depend on the char-
acteristics of the data and can be chosen em-
pirically.

3Recall that groups size in the NREL dataset can-
not be increased above 20 as the number of data
suppliers decreases with the summarization level (cf.
Section 3.3).
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Figure 11: Local group error for a given group size
and a summarization level. The legend indicates the
size of groups. Values above the dashed line (combi-
nations of group size and summarization level) indi-
cate a higher local group error compared to the the
highest local group error in the baseline scenario.

4.4. Total group error

If the total group error is low, each data
supplier’s summarized data are similar to the
data aggregated at the group-level, therefore
being in a group does not improve privacy
significantly. The measure of total group er-
ror can be interpreted as the efficiency of the
grouping mechanism. In both datasets, the
total group error increases when decreasing
the individual summarization level (Figure
12), thus data suppliers who summarize at
low levels have a higher incentive for group-
ing.

4.5. Grouping strategies

This section studies the effect of different
grouping strategies on the trade-off privacy
vs. accuracy. The first finding is that, in-
dependently of the grouping strategy, accu-
racy decreases with an increasing standard
deviation of group sizes, while it is not in-
fluenced by the number of groups (global er-
ror in Figures 13a, 13b, 13c). This result is
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Figure 12: Average total group error of a1 across
groups of size 2 for varying summarization levels. The
y axis shows the summarization level of a1, the x axis
the summarization level of a2.

consistent with previous results as it shows
that the grouping strategies do not influence
the global error (cf. Sections 4). The ef-
fect of standard deviation on global error can
be explained as follows: (i) The negative in-
fluence on accuracy by a data supplier that
increases its summarization level is higher
than the positive influence by a data supplier
that decreases its summarization level (Fig-
ure A.15). (ii) A higher value of standard
deviation corresponds to more extreme sum-
marization choices.

In contrast, privacy shows a dependency on
both the grouping mechanism and the sum-
marization choices. There is no substantial
difference between grouping randomly (Fig-
ure 13a) and grouping by data proximity
(Figure 13b), while there is a difference when
grouping by summarization proximity (Fig-
ure 13c, for a high number of groups and low
levels of standard deviation). This difference
is investigated in more detail in Figure 14,
which shows the privacy for a standard de-
viation of 2. The data proximity strategy
performs as the random, while the summa-
rization proximity strategy results in a local
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(a) Data suppliers are grouped randomly.
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(b) Data suppliers are grouped according to the
similarity of their raw data.
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(c) Data suppliers are grouped according to the
similarity of their summarization choice.

Figure 13: Errors for a given number of groups and
standard deviation of summarization levels. ECBT
dataset.

group error of around 10% higher than ran-
dom for more than 60 groups.

The illustrated results have several im-
plications: (i) The summarization proxim-
ity strategy groups data suppliers with sim-
ilar summarization levels together, and this
promotes fairness within groups (cf. Figure
9b). (ii) Grouping can be optimized using
knowledge about the individual summariza-
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Figure 14: Comparison of local group error for dif-
ferent grouping strategies, standard deviation of 2.
Error bars represent the standard deviation across
simulations. ECBT dataset.

tion choices. (iii) More fair incentive mech-
anisms can be designed if data suppliers are
rewarded based on their summarization level
and they are grouped by the summarization
proximity strategy. Incentive mechanisms4
that group data suppliers with the same cri-
teria have been proven to support coopera-
tion [32, 53].

5. Discussion and Future Work

The experimental results illustrated in this
paper show the following: (i) IoT-PGA in-
creases the individual privacy of data sup-
pliers without compromising system accu-
racy. (ii) The result of (i) holds across differ-
ent summarization levels, numbers of groups,
groups sizes, and distributions of group sizes,
which suggests that local aggregation is in-

4The concept can be extended by punishing data
suppliers in the less cooperative groups by prevent-
ing them from being in a group, thus reducing their
privacy level. Further research on such an extension
is part of future work.
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dependent of groups sizes and composition.
(iii) Larger groups improve privacy. (iv) The
same trade-off between privacy and accuracy
in the baseline scenario is also relevant within
groups: Uniform levels of summarization pro-
mote fair treatment, as the difference in pri-
vacy among group members is minimized if
all members summarize at the same level.
(v) An increase in summarization choices in-
creases the privacy and decreases the accu-
racy. An incentive system is required to guar-
antee a certain level of accuracy. (vi) Data
suppliers gain more privacy by being in a
group, independently of their summarization
level, compared to sharing data directly to
the data consumer. This result holds if the
size of groups is larger, or the number of
groups is lower, than a threshold, which de-
pends on the dataset. (vii) Grouping data
suppliers by the similarity of the chosen sum-
marization levels increases privacy by approx-
imately 10% over random grouping. (viii)
The choice of grouping strategy does not in-
fluence the accuracy of the system.

These results have implications on system
design choices: (i) Data suppliers belong-
ing to groups can reduce their summariza-
tion level in exchange for (monetary) rewards.
Their privacy is higher for each summariza-
tion level compared to the baseline scenario.
(ii) Group membership itself can be a reward,
if groups are large enough, as the privacy level
within the group is higher than the privacy
level outside the group, at any summarization
level. (iii) Grouping according to the sum-
marization choices promotes fair treatment
within the groups and delivers an increase in
privacy by 10% compared to random group-

ing.
A citizen may join a group using the (In-

ternet) connectivity offered by the IoT de-
vices, for the following reasons: (i) Improve
the quality of service, i.e. accuracy, by shar-
ing data without compromising privacy. (ii)
Improve privacy without degrading the ser-
vice quality. (iii) Allow other citizens to im-
prove their own privacy, even if the privacy
of this citizen is not a concern. (iv) Improve
privacy without other concerns.

Formal investigation of privacy guarantees,
i.e. anonymity [15, 67] and differential pri-
vacy, is outside of the scope of this paper.
Instead, this paper focuses on the empirical
evaluation of the IoT-PGA with real-world
data from two smart city pilot projects. Fu-
ture work towards the direction of more for-
mal privacy guarantees concerns the integra-
tion of micro-aggregation [13, 22] and differ-
ential privacy mechanisms [19, 39] in IoT-
PGA. Moreover, grouping strategies that en-
code trust models [64] and security against
malicious attackers that eavesdrop data [49]
are also subject of future work.

6. Related Work

Privacy-preserving mechanisms that op-
erate on groups improve fault-tolerance [6]
and allow more distributed and privacy-
preserving computations [19]. The concept of
group is also relevant in Big Data analytics
[35] and the Map-Reduce paradigm. Privacy
preservation is performed at each node (map-
per) in order to provide privacy guarantees
on the local data [74]. The Big Data sce-
nario differs from the collective sensing sce-
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nario in that each node operates on a large
database, as opposed to local data records,
on which standard anonymization techniques
can be applied. Nevertheless, mechanisms de-
signed to run on databases could be deployed
on a group of IoT devices.

The design of IoT-PGA draws parallels to
micro-aggregation [13, 22], however there are
several differences: (i) In a collective sens-
ing scenario, queries target macro-level data5

i.e. estimators of the population characteris-
tics, while in micro-aggregation, queries tar-
get micro-level data i.e. individual charac-
teristics [7]. (ii) Micro-aggregation is mainly
an anonymization technique, while the collec-
tive sensing scenario studied focuses on ob-
fuscation techniques. (iii) Micro-aggregation
requires a grouping mechanism that maxi-
mizes inter-group data homogeneity, while
IoT-PGA6 does not require this.

Secure multiparty computation encrypts
communication [75, 8], e.g. with homomor-
phic encryption, which allows for perform-
ing mathematical operations on encrypted
data [28]. However, such techniques are
computationally expensive and cannot eas-
ily satisfy high performance requirements in
resource-constraint networks running Inter-
net of Things applications [35].

Anonymization breaks the link between
the data and the identity of the owner [69],

5Note that privacy concerns are about micro-
data, which could reveal privacy-sensitive informa-
tion about the data suppliers.

6If groups are at least of size k and members have
similar data, IoT-PGA fits the requirements of micro-
aggregation.

e.g. mix zones, in which pseudonyms are ex-
changed between users in a certain spatial re-
gion [5]. Both of these approaches are cen-
tralized, thus require a trusted management
system, e.g for cryptographic key distribu-
tion or anonymization [27, 31, 48], as well
as potential changes in the aggregation algo-
rithm. Obfuscation can instead be adopted
by individual users [16, 2] e.g. to reduce
data granularity [65, 60] or introduce pertur-
bations [17]. When such management sys-
tems are not available or too costly to em-
ploy, obfuscation is an alternative for citizens
to adopt e.g. to reduce data granularity or
introduce perturbations.

Several attacks have been developed to
deanonymize data by exploiting auxiliary in-
formation: (i) episodic observation of individ-
ual behavior [47, 68, 25], (ii) contextual infor-
mation about the users [76, 52], which allows
to draw links between anonymized records
and an external database [41], or (iii) statis-
tical properties of the data, e.g. regularities
in mobility traces [71], even if the data are
obfuscated [12]. Therefore, measures such as
k -anonymity [63] or entropy [4] do not always
preserve privacy in the system. In response to
this finding, the privacy measure of expected
distance error is introduced [65]. The mea-
sures of privacy used in the present work (as
well as those in [60]) are derived from the
measure of the expected distance error, in
which the attacker does not apply any infer-
ence function to the observed data.
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7. Conclusions

Previous work identified several privacy-
preserving mechanisms that increase privacy
by degrading the quality of shared data with
several techniques discussed. This work con-
tributes a new opportunity to enhance the
privacy of all these mechanisms: adapta-
tion of the network organization as a new
means for increasing privacy in the Internet
of Things.

A new bottom-up privacy-preserving
mechanism for data aggregation, referred to
as IoT-PGA, is devised and evaluated, in
which data suppliers are grouped and per-
form group-level aggregation. New privacy
and accuracy metrics are defined and used
for the evaluation in the grouping scenario.
Privacy and accuracy of IoT-PGA are mea-
sured using real-world data from two smart
city pilot projects to evaluate its general
applicability. The mechanism is found to
increase the privacy of individuals, without
degrading the accuracy of aggregation for
several different experimental and parameter
settings.

Moreover, trade-offs between privacy and
aggregation accuracy are studied in the con-
text of privacy-enhancing network grouping.
Different grouping strategies are designed
and experimentally evaluated. When groups
are formed based on the proximity of users’
choices on the summarization level (summa-
rization proximity strategy), the highest in-
crease in privacy is achieved, approximately
10% above random grouping.

IoT-PGA is relevant for smart city pilot
projects in energy management, traffic man-

agement, and other application scenarios, as
it reduces the privacy cost for citizens to con-
tribute data. In this context, IoT-PGA can
encourage participation to smart city initia-
tives and ultimately the sustainability of the
nowadays digital society.
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I. Privacy and Accuracy Measures

Earlier work introduces measures of pri-
vacy and accuracy [60]. The local error, mea-

suring privacy, is defined as follows:

εe,t =
1

n

n∑
i=1

εi,e,t; εi,e,t =
|ri,e,t − si,e,t|
|ri,e,t|

,

(A.1)

where each term is the difference between the
raw and summarized data of supplier i. The
global error, measuring accuracy, is defined
as:

εe,t =
|α(Re,t)− α(Se,t)|

|α(Re,t)|
, (A.2)

which is the average difference between the
raw data Re,t = (ri,e,t)

n
i=1 and the summa-

rized data Se,t = (si,e,t)
n
i=1 collected by the

data consumer.
Note that the local error is the average of

the individual errors, while the global error
is the error of the aggregates. Both measures
are normalized on the raw data, in order to
make them comparable. Also note that the
global error depends on the aggregation func-
tion, but it does not change when considering
the mean and the sum as aggregation func-
tions. In both cases the global error is speci-
fied as follows:

εe,t =
|
∑n

i=1 ri,e,t −
∑n

i=1 si,e,t|
|
∑n

i=1 ri,e,t|
, (A.3)

as the mean divides both numerator and de-
nominator by the same quantity n.

The measures of global and local error re-
semble the Mean Absolute Percentage Error
(MAPE), and similarly suffer from the same
drawbacks: they have no upper limit and
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Figure A.15: Comparison between the original mea-
sures, see [60], and the symmetric measures.

they are not defined if there are zero values.
These limitations are resolved by introducing
a symmetric version of the measures, based
on the symmetric MAPE (sMAPE):

εe,t =
1

n

n∑
i=1

εi,e,t; εi,e,t =
|ri,e,t − si,e,t|
|ri,e,t|+ |si,e,t|

,

(A.4)

which defines the symmetric local error, while
the symmetric global error is defined as

εe,t =
|α(Re,t)− α(Se,t)|
|α(Re,t)|+ |α(Se,t)|

, (A.5)

where Re,t = (ri,e,t)
n
t=1 and Se,t = (si,e,t)

n
i=1.

This choice is validated by comparing the
symmetric measures with the original mea-
sures on the ECBT dataset (Figure A.15).
The measures are qualitatively similar for
summarization levels higher than 1/20, so in
this region the two measures can be used in-
terchangeably.

A translation- and scale-invariant error
measure considers the similarity between the
shapes of the signals, as opposed to the sim-
ilarity between individual points. In many

situation the shape of a signal can reveal as
much privacy-sensitive information as the nu-
merical values of its points, for example a
sudden drop in residential energy consump-
tion can reveal that the tenants are away.
In the group setting, the shape of the sig-
nal becomes relevant whenever a group mem-
ber adopts a very high summarization and
the others do not: Assume groups have size
two, so the difference between the data of one
supplier and the group data is precisely the
data of the other member. Assume the first
group member a1, chooses a summarization
level of one, thus producing a constant out-
put greater than zero (Figure A.16a), and the
second member a2, chooses a lower summa-
rization level (Figure A.16b). In this case, the
group data, the average of the member’s in-
dividual data, has the same shape as the sec-
ond supplier’s data and a mean value equiva-
lent to the average of the mean values (Figure
A.16c).

In the example in Figure A.16 the signals
have different means. A standard measure,
which is neither scale nor translation invari-
ant, indicates an error proportional to the
difference of the means, because it considers
the individual points (Figure A.16d). The
property of translation-invariance makes the
measure robust against these translations:
the error is computed as if the original data
have zero mean. The error is still greater
than zero because the signal of a2 has been
rescaled during the averaging: its amplitude
is reduced. The property of scale-invariance
makes a measure robust to changes in the am-
plitude of a signal, the error is computed on
the similarity between the shapes of the sig-
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nals. The error computed by a translation-
and scale-invariant measure is zero.
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Figure A.16: Example explaining the properties of
translation- and scale-invariance for an error mea-
sure.

To address these concerns, a new error

measure is required in the group setting, to
compare the group-aggregated data and the
data of an individual supplier: the Pearson
product-moment correlation coefficient p (cf.
Equation A.6), which measures the corre-
lation between two vectors, and it is both
translation- and scale-invariant.

pi,e =

∑Te

t=1(ri,e,t − r̄i,e)(αG
e,t − ᾱG

e )√∑Te

t=1(ri,e,t − r̄i,e)2
√∑Te

t=1(α
G
e,t − ᾱG

e )2

(A.6)

The Pearson coefficient is a measure of simi-
larity. An error measure, denoted as privacy-
correlation, is derived from the Pearson co-
efficient and defined as Ci,e = 1 − pi,e. The
value of C decreases with an increasing sim-
ilarity between the vectors, so a higher value
of C indicates higher privacy-preservation.
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Figure A.17: Privacy-correlation between the sum-
marized data of a1 and the group data (summarized)
for varying summarization levels. The y axis shows
the summarization level of a1, the x axis the summa-
rization level of a2.

Looking in more detail into the previous re-
sults, two observations become apparent: In
the NREL dataset (Figure 9a) the privacy of
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a1 increases slightly for lower summarization
levels of a2, this is probably an artifact of
the reduced number of data points at high
summarization levels (cf. Figure 4). In the
ECBT dataset (Figure 9a) the privacy of a1
increases if a2 summarizes with a summariza-
tion level of one, which is a counterintuitive
artifact of the privacy measure. If one of the
two members of a group summarizes with a
summarization level of one, the group data
is the average between this constant and the
data of the other supplier. Averaging a sig-
nal with a constant modifies the scale and the
offset of a signal, but does not vary its shape,
which could reveal highly privacy sensitive in-
formation (cf. Figure A.16).

The measure of privacy-correlation be-
haves as expected in the case the summarized
data of a supplier is a constant: if a2 chooses
a summarization level of one (first column of
Figure A.17) the privacy-correlation between
the data of a1 and the group data is minimal.
Assuming that neither data suppliers choose
a summarization level of one, the results pro-
duced by the privacy-correlation measure are
similar to those produced by the standard
privacy measure (Figure 9a), thus the stan-
dard measure gives valid results for summa-
rization levels other than one.

II. Empirical group frequencies for dif-
ferent probability distributions

Figures B.18, B.19, B.20 show the em-
pirical frequencies of group sizes for differ-
ent probability distributions. The grouping
mechanism produces artifacts, representing
groups of unexpected size: at first the group

sizes are drawn from the probability distribu-
tion and then the population is divided ac-
cordingly in groups. Depending on the sam-
pling, the sum of the group sizes and the size
of the population might not be equal. The re-
maining data suppliers are grouped together.
This is apparent for a step function (Figure
B.20b), where some groups have size between
2 and N , represented as squares in the middle
of the frequency diagram.
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Figure B.18: Empirical frequency of group sizes.
Group sizes generated randomly by sampling from
a uniform distribution.
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Figure B.19: Empirical frequency of group sizes.
Group sizes generated randomly by sampling from
a power law distribution.
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Figure B.20: Empirical frequency of group sizes.
Group sizes generated randomly by sampling from
a step function.

31


	Introduction
	Privacy-enhancing Grouping
	Grouping
	Privacy cost
	Local group error
	Total group error
	Global error


	Experimental Methodology
	Summarization function
	Group formation
	Smart city datasets
	Aggregation function

	Experimental Evaluation
	Non-uniform grouping
	Inner group dynamics
	Grouping as incentivization
	Total group error
	Grouping strategies

	Discussion and Future Work
	Related Work
	Conclusions
	Acknowledgements
	References
	Privacy and Accuracy Measures
	Empirical group frequencies for different probability distributions

