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Motivation 

smart cities 

smart grids 

wearables 

smart phones 
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Energy Management Challenges 
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Matching supply & demand 

Negative peaks 

cascading failures  

Integration of renewables, battery technologies, electrical vehicles, etc. 

Participation, discomfort & fairness 

Demand-side energy management 
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Transport & Traffic 
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Transport and Traffic Challenges 
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Load-balancing of bike sharing stations 

Waste management 
Smart Parking 
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Sharing Economies 
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Management & Regulation with ICT 

Data Sharing 

Data Analytics 

Optimization & Learning 

Centralized Design 
Beyond scalability 

 

Discriminatory  
big data analysis 

Privacy-intrusion, 
surveillance 
 & profiling  

 

Autonomy 
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Decentralized Participatory Design 
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Build digital democracy
Open sharing of data that are collected with smart devices would empower citizens 

and create jobs, say Dirk Helbing and Evangelos Pournaras.

Fridges, coffee machines, toothbrushes, 
phones and smart devices are all now 
equipped with communicating sensors. 

In ten years, 150 billion ‘things’ will connect 
with each other and with billions of people. 
The ‘Internet of Things’ will generate data vol-
umes that double every 12 hours rather than 
every 12 months, as is the case now. 

Blinded by information, we need ‘digital 
sunglasses’. Whoever builds the filters to 
monetize this information determines what 
we see — Google and Facebook, for exam-
ple. Many choices that people consider their 
own are already determined by algorithms. 
Such remote control weakens responsible, 
self-determined decision-making and thus 
society too.

The European Court of Justice’s ruling 
on 6 October that countries and companies 
must comply with European data-protec-
tion laws when transferring data outside the 
European Union demonstrates that a new 
digital paradigm is overdue. To ensure that 
no government, company or person with 
sole control of digital filters can manipulate 

our decisions, we need information sys-
tems that are transparent, trustworthy and 
user-controlled. Each of us must be able to 
choose, modify and build our own tools for 
winnowing information. 

With this in mind, our research team at 
the Swiss Federal Institute of Technology in 
Zurich (ETH Zurich), alongside international 
partners, has started to create a distributed, 
privacy-preserving ‘digital nervous system’ 
called Nervousnet. Nervousnet uses the sen-
sor networks that make up the Internet of 
Things, including those in smartphones, to 
measure the world around us and to build a 
collective ‘data commons’. The many chal-
lenges ahead will be best solved using an 
open, participatory platform, an approach 
that has proved successful for projects such 
as Wikipedia and the open-source operating 
system Linux. 

A WISE KING?
The science of human decision-making is 
far from understood. Yet our habits, rou-
tines and social interactions are surprisingly 

predictable. Our behaviour is increasingly 
steered by personalized advertisements and 
search results, recommendation systems 
and emotion-tracking technologies. Thou-
sands of pieces of metadata have been col-
lected about every one of us (see go.nature.
com/stoqsu). Companies and governments 
can increasingly manipulate our decisions, 
behaviour and feelings1. 

Many policymakers believe that personal 
data may be used to ‘nudge’ people to make 
healthier and environmentally friendly 
decisions. Yet the same technology may 
also promote nationalism, fuel hate against 
minorities or skew election outcomes2 if eth-
ical scrutiny, transparency and democratic 
control are lacking — as they are in most 
private companies and institutions that use 
‘big data’. The combination of nudging with 
big data about everyone’s behaviour, feelings 
and interests (‘big nudging’, if you will) could 
eventually create close to totalitarian power. 

Countries have long experimented with 
using data to run their societies. In the 1970s, 
Chilean President Salvador Allende created 

Many choices that people consider their own are already determined by algorithms.
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DEMOCRATIZATION OF  
INTERNET OF THINGS 

•  Scalability 
•  Participation: computational 

resources, sharing economies 

•  Services as public good by 
citizens for citizens 

•  Privacy-by-design 

Decentralization 
 

•  Informational self-determination 

•  Autonomy 
•  Fairness 



| | www.evangelospournaras.com Dec. 2017 Dr. Evangelos Pournaras 10 

Data Sharing 

Data Analytics 

Optimization & Learning 
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Data Sharing 
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Data Sharing Vision 

Aggregator Selections 

accuracy in analytics  

rewards costs 
Citizen 1 

Data 
Collection 

Sharing 
Regulation 

Raw Data 

Data 
Collection 
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Regulation 

Raw Data 

Citizen 2 

rewards 

privacy-preservation 

Citizen Selections 
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High Low 

High Low 

Analytics  

Incentivization  
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Data 
Collection 

Sharing 
Regulation 

Raw Data 

Citizen N 

. . 

. 

Supply Demand 
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Privacy vs. Accuracy – Smart Grid 

Summarization: k-means 
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Privacy vs. Accuracy – Nervousnet 

Summarization: k-means 
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Mining Privacy-Utility Tradeoffs 
>20000 differential privacy settings 
Real-world data – Smart Grids, smart phone sensing 
Varying # of users with varying privacy requirements 

Privacy Median Utility Median 
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Data Analytics 
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Research Question 

How to perform decentralized, dynamic & privacy-preserving data analytics  
over Internet of Things in a cost-effective & resilient way? 

Collective P2P computations 
+ 

crowd  resources 

Self-correcting operations 
high accuracy 

Real-time continuous 
adjustments of computations Aggregation functions 

SUM, AVG, STDEV, MAX, MIN 

Highly entropic 
sensor streams 

Communication, memory 
vs. 

accuracy 

DEMOCRATIZATION OF 
DATA ANALYTICS 

Data summarization 
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Focus 

∑DIA
dias-net.org 

Dynamic Intelligent Aggregation Service 
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DIAS – How it works!  

di aj ai dj 

Peer Sampling Service 

…
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PUSH 
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bloom filters bloom filters 

AMD 
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DMA 

SMA 

… pi,1 
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pi,k 
 possible states 

selected state 

pool 
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DIAS 
network 
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Internet of Things  
data suppliers 

Raw sensor data 
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Decentralized Data Management 

overall error 

DIAS error 

Internet of Things  
data consumers 

aggregation data summarized data 

summarization error 

Summarization unit 

DIAS network 
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Visualization 

Epoch 14 

Epoch 15 

Epoch 18 

Epoch 19 

Epoch 23 
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Resilience of Accuracy 
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3000 nodes – Extreme scenario: all nodes with a data suppliers & consumers  
Real-world data: Electricity Customer Behavioral Trial 

Implemented with the Protopeer distributed prototyping toolkit 
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Cost of Resilience 
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3000 nodes – Extreme scenario: all nodes with a data suppliers & consumers  
Real-world data: Electricity Customer Behavioral Trial 

Implemented with the Protopeer distributed prototyping toolkit 
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Optimization & Learning 
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Smart City Sharing Economies 

Local:   make a shower, cook, laundry, charge EV 
Global: prevent a blackout,  
             minimize production costs,  
             maximize use of renewables 

Local:  station to pick or leave a bicycle 
Global: prevent overload/underload of bicycle stations 
             minimize manual bicycle relocations 
             minimize operational costs  
             minimize investment costs    

A computational design paradigm for truly decentralized 
participatory sharing economies? 
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epos-net.org 

Economic Planning & Optimized Selections 
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Participation Model – Crowd-sourced Flexibility 

Planning alternative operations: possible plans 
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Technology 
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Computational Model 

(+) 

Brute Force 

Complexity = # of possible plans# of devices 



| | www.evangelospournaras.com Dec. 2017 Dr. Evangelos Pournaras 30 

Decentralized Learning Algorithm 

1. Bottom-up phase: form candidate solutions 

Selection function: e.g. Minimum variance, match target signal 

1.  (Self-)organization in a tree topology 
2.   bottom-up aggregation &  decision-making 

Local information 
+ 

 aggregate information (branch/tree) 

2. Top-down phase: back-propagate effective solutions  
3. Repeat to learn 

Monotonously improving/learning solutions 
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Experimental Evaluation 

(a) iteration 2 (b) iteration 3 (c) iteration 4 (d) iteration 5 (e) iteration 6 (f) iteration 7 (g) iteration 8 (h) iteration 9

(i) iteration 2 (j) iteration 12 (k) iteration 22 (l) iteration 32 (m) iteration 42 (n) iteration 52 (o) iteration 62 (p) iteration 72

Fig. 10: (a)-(h) I-EPOS vs. (i)-(p) COHDA. Network snapshots showing the agents (in black) changing their selection and
agents (in white) that do not change their selection.
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Fig. 11: Power peak-shaving by I-EPOS on the PNW dataset.

0 5 10 15 20 25 30
average shift (min)

780
800
820
840
860
880
900
920
940

pe
ak

de
m

an
d

(k
W

)

(a) PNW-MORNING

0 5 10 15 20 25 30
average shift (min)

700

720

740

760

780

800

820

pe
ak

de
m

an
d

(k
W

)

(b) PNW-EVENING

Fig. 12: Trade-off between peak demand reduction
and average demand shift in the selected plans
� 2 {0, 0.5, . . . , 4, 5, 6, 100} after t = 60 iterations for
the PNW datasets.

algorithm. The timeslot is chosen from 8:00am to 10:00am.
All historic unique trips a user did in the defined timeslot of
a week day are considered as the possible plans for that day.
The local cost of each plan is defined by the likelihood the
user does not make the trip instructed in the plan. For instance,
if three plans are chosen in 4, 5 and 1 days of the measured
time period respectively, the local cost for these plans is 0.6,
0.5 and 0.9 respectively.

Figure 13a illustrates the load-balancing of the stations

using I-EPOS without varying the local cost of the plans after
15 iterations. I-EPOS reduces the variance from roughly 230
to 0.58. This indicates a significant potential to reduce the
number of manual bike relocations. However, recommenda-
tions may not be followed if the user is unlikely to choose a
certain trip, i.e. a trip with high local cost. Figure 13b shows
the trade-off between global and local cost controlled via the
� parameter after 30 iterations. A � = 0 is the one extreme in
which the local cost is not considered, in contrast to � = 100
that results in global response equivalent to the original data.
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Fig. 13: I-EPOS performance for the bicycle sharing dataset.

Results show that making plan selection with the average
likelihood of the selected plan reduced in half is followed by
a reduction of the variance by a factor of more than 100.

V. I-EPOS AS A PARADIGMATIC ARTIFACT

Motivated by the tremendous potential that solutions to
decentralized combinatorial optimization problems can have in
building more sustainable and resilient digital societies [27],
as shown in the application scenarios of participatory sharing
economies in Section IV-B, authors move a step forward and
contribute a paradigmatic software implementation of I-EPOS
and other supporting software to the broader relevant research

1000 users 

Time: 08:00-10:00 

Plan generation using historic trips 

13 plans, generated by load-shifting 

Time: 11:00-23:00 1000 households 

(a) iteration 2 (b) iteration 3 (c) iteration 4 (d) iteration 5 (e) iteration 6 (f) iteration 7 (g) iteration 8 (h) iteration 9

(i) iteration 2 (j) iteration 12 (k) iteration 22 (l) iteration 32 (m) iteration 42 (n) iteration 52 (o) iteration 62 (p) iteration 72

Fig. 10: (a)-(h) I-EPOS vs. (i)-(p) COHDA. Network snapshots showing the agents (in black) changing their selection and
agents (in white) that do not change their selection.
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All historic unique trips a user did in the defined timeslot of
a week day are considered as the possible plans for that day.
The local cost of each plan is defined by the likelihood the
user does not make the trip instructed in the plan. For instance,
if three plans are chosen in 4, 5 and 1 days of the measured
time period respectively, the local cost for these plans is 0.6,
0.5 and 0.9 respectively.

Figure 13a illustrates the load-balancing of the stations

using I-EPOS without varying the local cost of the plans after
15 iterations. I-EPOS reduces the variance from roughly 230
to 0.58. This indicates a significant potential to reduce the
number of manual bike relocations. However, recommenda-
tions may not be followed if the user is unlikely to choose a
certain trip, i.e. a trip with high local cost. Figure 13b shows
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Fig. 13: I-EPOS performance for the bicycle sharing dataset.

Results show that making plan selection with the average
likelihood of the selected plan reduced in half is followed by
a reduction of the variance by a factor of more than 100.

V. I-EPOS AS A PARADIGMATIC ARTIFACT

Motivated by the tremendous potential that solutions to
decentralized combinatorial optimization problems can have in
building more sustainable and resilient digital societies [27],
as shown in the application scenarios of participatory sharing
economies in Section IV-B, authors move a step forward and
contribute a paradigmatic software implementation of I-EPOS
and other supporting software to the broader relevant research
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Comparison with Related Work 

Computational cost Communication cost 

Superior performance even when compared to systems  
storing complete information & performing brute-force operations 
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Connecting the dots… 
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Connecting the dots 

Data Sharing 

Data Analytics 

Optimization & Learning 
Moving solutions 

techno-socio-economic systems 

Policy-maker Researcher 

Citizen 

Scientific methods for evaluating regulatory practicies & policies? 
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Scientific Methods 

Modeling & simulation of techno-socio-economic systems 

Understanding system complexity 

Prototyping online & distributed regulatory mechanisms to support system operations.  
 

§  Fragmentation & discrepancies between simulation communities 
§  Models, data formats & tools  

§  Low modularity & reconfigurability 
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Focus 

Simulation Framework for Intelligent Network Adaptations 

sfina-net.org 
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SFINA Modeling Approach 

Domain Knowledge & Dynamics 
Real-world data, physical laws, etc. 

Flow networks 
Temporal directed weighted graphs 

Regulation Models, Policies & Mechanisms 
Flow optimization, network repairability, coordination mechanisms, etc.  
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Simulation Agent 
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SFINA Architecture 

File System 

Flow Network 
Management, measurements & visualization 

                                      Flow Analyzer … … … … 

Protopeer 
Distributed  networking, scheduling, logging & deployment services  

Backend Agent 

Nodes & 
Links 

Topology 

Temporal 
Adjustments 

Events 

System-wide 
Settings 

Parameters 
… 

Domain 
Backends 

… 
Domain 

Backends 

… 
Flow Flow 

… 
Domain 

Backends 

Flow 

Applications 
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Application Scenario 

using smart transformers! 

Self-repairable Smart Grids against cascading failures 
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Smart Transformers 

Control of phase angle 
in power lines 

Intelligence & communication 
+ 

Control of power redistribution 
over parallel lines 

Control over cascading failures: 
prevention & mitigation 
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Smart Transformers against Cascading Failures 
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Smart Transformers against Cascading Failures 
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Smart Transformers against Cascading Failures 
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Smart Transformers against Cascading Failures 

3 

0/3 

3/4 

1.5/3 
0/3 

0 

1.5 

0/0.75 

0/0.5 

Flow/capacity 

Su
pp

ly
 D

em
and 

1.5/2 

1.5/2 

? 

? 



| | www.evangelospournaras.com Dec. 2017 Dr. Evangelos Pournaras 45 

Smart Transformers against Cascading Failures 
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Actor Perspectives 

Citizens 

Quality of Service 

Policy-makers 

Infrastructural costs & investments 

System Operators  

Well-established resilience actions 

Researchers 

Discover new applicable solutions 

Self-repairable Smart Grids against Cascading Failures 

using smart transformers! 
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Online Coordination of Smart Transformers 
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2 optimization strategies 

IEEE case 39, AC power flows 

0-15 smart transformers 

N-1 contingency analysis 

Dell inspiron n5110 personal computer 
6GB memory 
Intel(R) Core(TM) i7- 26300QM CPU @ 
2.00GHz 
Ubuntu 15.10.  
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Smart Transformer Healing Modes 

Events Sequence 

Perturbation 
line/node failure, load change 

Load-shedding 

Healer 1: AFTER system perturbation AND BEFORE load-shedding 

Healer 1 

Healer 3: AFTER system perturbation AND AFTER load-shedding 

Healer 3 

Healer 2: BEFORE AND AFTER system perturbation AND BEFORE load-shedding 

Healer 2 
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Smart Transformer Healing Modes 

52.89% 50.94% 53.26% 

48.26% 48.35% 48.71% 

Strategy 1 

Strategy 2 



| | www.evangelospournaras.com Dec. 2017 Dr. Evangelos Pournaras 50 

Smart Transformer Healing Modes 

13.46% 12.48% 13.76% 

8.37% 8.69% 6.64% 

Strategy 1 

Strategy 2 
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Concluding Remarks – Resilient Smart Cities 

Re-inventing analytics, optimization & machine learning 
Participation via crowd-sourced & self-determined operational flexibility 

Collective computational intelligence as public good 
System decentralization as tactical utility 

Online infrastructural self-regulation 
Highly complex & risky 

 Tremendous opportunities 

Engineering socially-responsible data sharing  
Economic rewarding of the measurable privacy cost 
Design safeguards for a measurable social welfare 
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Questions? 
ETH Zurich 

Evangelos Pournaras 

epournaras@ethz.ch 

www.evangelospournaras.com 

epos-net.org dias-net.org 

www.sobigdata.eu www.asset-consumerism.eu 

sfina-net.org 


