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Abstract—The Internet of Things empowers citizens to inter-
connect their devices, such as smart phones, into large-scale
participatory decentralized networks, which they can use to make
real-time collective measurements as public good, for instance,
crowd-sourcing the monitoring of traffic in a city. This approach
is an alternative to big data analytics systems that are often ex-
pensive to access, privacy-intrusive and allow discriminatory and
profiling actions over citizens’ data. On the contrary, large-scale
decentralized networks are complex to manage and collective
measurements, i.e. computations of aggregation functions, need to
encounter several dynamics such as continuously changing input
data streams and highly varying temporal demand for access
to the collective measurements. This paper proposes a highly
reactive self-adaptation model to tackle the challenge of dynamic
computational demand in large-scale decentralized in-network
aggregation. The self-adaptation process makes nodes self-aware
about other nodes that join and leave the network and therefore
it makes them capable of self-orchestrating the communication
to improve accuracy and minimize communication cost. The
model is simple, yet agile. This is shown when applied in DIAS,
the Dynamic Intelligent Aggregation Service without introducing
architectural changes. Evaluation using data from a real-world
smart grid pilot project as well as extreme demand profiles that
scale up and down the demand 50% on average confirm the
cost-effectiveness of in-network aggregation empowered by self-
adaptation. The findings are confirmed both in simulation and a
large-scale live deployment in a cluster infrastructure with 3000
independent Java virtual machines each running a DIAS node.
Overall, the results encourage new promising pathways towards
the broader adoption of self-adaptive participatory data analytics
in large-scale decentralized networks.

Keywords-self-adaptation; aggregation; accuracy; data analyt-
ics; decentralized network; participation; agent, gossip commu-
nication

I. INTRODUCTION

Large-scale decentralized networks running the Internet of
Things can be formed in a bottom-up way by citizens to
perform real-time participatory data analytics as public good,
in contrast to centralized big data analytics that are usually
privacy-intrusive, and may allow discriminatory and profiling
actions over citizens’ data [1], [2]. This is especially the case in
non-critical applications that can tolerate inaccuracies and high
network dynamics, for instance, citizens who self-organize and
employ decentralized data analytics for a higher community
self-awareness about safety, traffic, social networks, human
mobility, energy consumption and other [3], [4], [5], [6],

[7]. However, large-scale decentralized networks are highly
complex to control and manage, especially when distributed
computations need to adapt to dynamics such as varying
demand by citizens, who may choose to autonomously par-
ticipate or not in the network, with implications to the quality
of service, i.e. accuracy, and communication cost experienced
in the network. This paper studies self-adaptation as the means
to cost-effectiveness in such dynamic environments, and there-
fore to the feasibility of decentralized data analytics. The focus
of this paper is the design of a simple, yet agile self-adaptation
process to dynamic computational demand that can make
large-scale decentralized networks capable of performing ac-
curate data analytics without unnecessarily consuming network
resources under perturbations in computational demand.

A dynamic computational demand occurs when users tem-
porarily request access to the results of real-time data ana-
lytics operations, for instance, the total load of the power
grid [8], or the average traffic in a city [9]. The nodes of
a decentralized network that performs in-network aggregation
need to communicate and exchange their values so that the
estimations of aggregation functions, i.e. SUMMATION and
AVERAGE, converge to the actual ‘true’ values. When the
demand scales up and down, meaning new nodes join and
request access to the aggregates, the accuracy drops dramat-
ically and communication between nodes needs to increase
to encounter for the new demand, i.e. request access to
the output of the aggregation functions. There is a plethora
of work on how to perform intelligent resource allocation
and provision in centralized computational systems such as
cloud computing and big data infrastructures [10], [11], [12].
However, there is very limited work that studies the effect
of varying computational demand on the cost-effectiveness of
decentralized in-network aggregation, which actually turns out
to be a challenge of efficient communication and distributed
data management rather than a parallel computational problem.

This paper introduces a novel model of self-adaptation
to dynamic computational demand. The model is based on
gossiping communication that allows each node in a network
to become self-aware about new nodes joining the network. By
detecting the joined nodes, communication is reactively self-
orchestrated so that the shared data reach the nodes that join
the network. As a result, the accuracy of aggregation rapidly
increases. On the contrary, when nodes leave the network, the978-1-5386-1465-5/17/$31.00 c©2017 IEEE



communication automatically diminishes and therefore net-
work resources are used more efficiently. The model is applied
to DIAS, the Dynamic Intelligent Aggregation Service and is
evaluated under several extreme demand profiles in which on
average 50% of the nodes join and leave the network. Data
from a real-world smart grid pilot project are fed in a network
operating in simulation as well as in a live network deployment
with 3000 Java virtual machines communicating in parallel
over a cluster network. Results confirm the feasibility of
aggregation under dynamic computational demand. Trade-offs
between accuracy and communication cost are illustrated.

In summary, the contributions of this paper are the follow-
ing:

• A self-adaptation model for large-scale decentralized data
analytics under dynamic computational demand.

• The applicability and evaluation of the self-adaptation
model in DIAS, the Dynamic Intelligent Aggregation
Service. The implemented model is a new system feature
that makes DIAS self-adaptive to a varying number of
aggregators in the network.

• Measurements that compare and contrast simulation and
the live network deployment of DIAS operating with
3000 parallel Java virtual machines under highly dynamic
computational demand.

This paper is organized as follows: Section II introduces
the model of self-adaptive data analytics to dynamic com-
putational demand. Section III illustrates the applicability
of the proposed model in DIAS, the Dynamic Intelligent
Aggregation Service. Section IV experimentally evaluates the
proposed model under extreme synthetic demand profiles in
simulation and live deployment using real-world smart grid
data. Section V compares the proposed self-adaptation model
with related work. Section VI concludes this paper and outlines
future work.

II. A SELF-ADAPTIVE MODEL FOR DYNAMIC
COMPUTATIONAL DEMAND

The proposed model is designed for data analytics over
large-scale decentralized networks in which data suppliers
share data and data consumers collect aggregate informa-
tion computed over the shared data. This paper focuses on
lightweight data analytics such as the in-network computa-
tion of aggregation functions e.g. SUMMATION, AVERAGE,
MAXIMUM, STANDARD DEVIATION, TOP-K, etc, which
are challenging to accurately estimate in a decentralized net-
work [13], [14]. In-network aggregation makes available to
every node participating in the network the output of the
computed aggregation functions using as input the values of
all nodes connected to the network.

A user running an application on a smart phone or a
personal computer connects to a node of a decentralized
network with computational resources allocated for in-network
aggregation. These resources can be the users’ devices, a
collection of distributed servers for this purpose [15], [3] such
as the community pods in the Diaspora social network, or a
cloud computing infrastructure [16]. The user connects to the

network node as data supplier, data consumer or both. The
node contains two agents: (i) the disseminator and (ii) the ag-
gregator. A data supplier shares its data with the disseminator
agent that is responsible to remotely communicate with other
online aggregators in the network and provide them with the
shared data. A data consumer acquires access to the output
of the aggregation functions via the aggregator agent in the
node. The aggregator collects the shared data of disseminators
and computes aggregation functions, whose output is made
available to the data consumers. Depending on the system
setup, use-case and application domain, access to aggregates
can be free, or it can also be an on-demand ‘pay as you
go’ service such as the pricing models that cloud computing
infrastructures adopt [17].

The proposed model focuses on the design of a self-
adaptation process to dynamic computational demand. A dy-
namic computational demand stems from the autonomy of
data consumers to participate on-demand in the network. An
automated self-adaptation is required to continuously scale
up or down the performed computations to only the nodes
participating with a data consumer. Figure 1 illustrates the
concept of in-network aggregation when a node joins the
network.

The self-adaptation process concerns the fully decentralized
detection of online and offline aggregators. Disseminators
monitor the network and discover aggregators that either (i)
recently joined the network and acquire the shared data of
data suppliers or (ii) have outdated information and acquire
the most recent shared data of data suppliers.

A decentralized network discovery of aggregators can be
achieved with the peer sampling service that is a gossip-based
communication mechanism [18]. Gossiping nodes maintain a
list of randomly selected node descriptors, the view, which
has a fixed size and is periodically exchanged with other
nodes via peer-to-peer interactions. The node descriptor con-
tains information such as the IP address and port number
of the node as well as application information registered for
spreading in the network, for instance the age1 of the node.
At each gossip exchange between two nodes, the views of
the nodes are exchanged. The descriptors that fill the updated
view are selected based on two parameters, the SWAPPER
and HEALER. SWAPPER selects highly random descriptors,
whereas HEALER selects the most recent descriptors, i.e.
descriptors with a low age. The peer sampling service provides
the following capabilities: (i) A well-connected and robust
overlay network that is continuously updated. (ii) A rapid
spread of information in the network.

Discovery is achieved as follows: When a data consumer
participates in the network, the respective aggregator comes
online and connects to the network. It adds a unique identifier
(ID) in the local node descriptor of the peer sampling service
and periodically resets the age field back to zero. The node
descriptor is spread to other remote nodes via the gossip-based

1This is a counter that the nodes in the network increment at every periodic
execution of the gossiping algorithm. The counter is reset back to zero by the
node that creates its descriptor as a way to signal to other nodes that is online.
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Figure 1. In-network aggregation (SUMMATION) and adaptation of computations when a node comes online in the network. At first, one offline and three
online nodes are present. Then all nodes come online. The joining disseminator sends its value to the existings nodes in the network. Computations of the
aggregation functions are adapted. The other disseminators send their value to the new online node. Aggregation function is accurately computed.

interactions and as a result disseminators have local access
to contact information of remote aggregators. By using this
information, disseminators establish an aggregation session
with each aggregator discovered via this process. In this way,
the shared data of the suppliers become input to remotely
computed aggregations functions, whose output is made avail-
able to data consumers. Nevertheless, a data consumer may
not anymore participate in the network. In this case, the
aggregator goes offline and, as a result, it removes its ID from
the node descriptor. Therefore, disseminators do not detect
the aggregator over time and no other aggregation sessions
are initiated. Algorithm 1 illustrates a high-level algorithm
description of the tasks executed by the aggregator.

Algorithm 1 The aggregator tasks orchestrated by the partic-
ipation of the data consumer in the network. Timers denote
the periodic execution of the peer sampling service and
aggregators.
Require: status from data consumer

1: loop
2: if status is ‘connect’ then
3: set ID in node descriptor
4: if peer sampling service timer expired then
5: reset age in node descriptor to zero
6: end if
7: if aggregator timer expired then
8: deliver aggregates to data consumer
9: end if

10: else
11: // status is ‘disconnect’
12: set ID in node descriptor to null
13: end if
14: end loop

Figure 2 highlights the proposed self-adaptation model for

in-network aggregation networks with varying computational
demand. Figure 2a shows a network without computational
demand as there are no data consumers participating. There are
no online aggregators and therefore disseminators do not find
in the view IDs of aggregators to communicate with. Figure 2b
shows a data consumer coming online in Node 1. It adds its
ID to the local node descriptor that is spread to the network
via the peer sampling service. The disseminator in Node 2
discovers the remote aggregator and performs an aggregation
session. The same process repeats in Figure 2c for Node 2.
In this case, each node is connected to a data supplier and
consumer.

Note that the self-adaptation process regulates the com-
munication performed in an automated fashion given the
computational demand in the network. Self-adaptation is or-
chestrated by the inner connected nodes of the network. No
third parties are introduced for this purpose and therefore
the model is highly applicable for large-scale decentralized
networked systems.

III. MODEL APPLICABILITY

The proposed self-adaptation model is applied to the decen-
tralized in-network aggregation system of DIAS, the Dynamic
Intelligent Aggregation Service. This section provides an out-
line of DIAS, however, a detailed illustration is out of the
scope of this paper and it is covered in earlier work [19],
[14], [20]. Therefore, the focus of this section is to illustrate
how the proposed self-adaptation model is applied to DIAS.

DIAS has three special features that distinguish it from
other related decentralized aggregation systems [13], [21],
[22], [23]: (i) It can compute multiple aggregation functions
without changing the executed algorithm [19], [14]. (ii) Es-
timations of the aggregates can be continuously adapted to
encounter changing input data (streams) from each node [14].
(iii) Estimation of the aggregates can be adapted when data
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Figure 2. A self-adaptive network model to varying computational demand. Data suppliers share data with data consumers. When only data suppliers
participate in the network, there is no communication exchange in the network. Aggregators are offline. When data consumers join, aggregators connect and
add their IDs in their node descriptor that is spread via the peer sampling service. Disseminators discover these IDs and initiate aggregation sessions with
remote aggregators to share the data of their data supplier.

suppliers join and leave the aggregation network or even
fail [20]. However, a self-adaptive aggregation when data
consumers join and leave the network has not been earlier
studied within the context of DIAS as well as in the broader
context of decentralized in-network aggregation. This paper
bridges this gap and contributes a new feature to DIAS: on-
demand self-adaptation to dynamic computational demand, i.e.
varying number of data consumers.

The first feature is engineered via aggregation sessions that
make locally available to every data consumer the input values
of an aggregation function. This is achieved via the discovery
of data consumers by data suppliers using the peer sampling
service. The second feature is feasible by using the local data
model of possible states. According to the model, the data
supplier does not have to share the raw data it generates as
these data may change so rapidly that the changes become
irrelevant if they have to be communicated in real-time over a
large-scale decentralized network. Moreover, privacy concerns
may restrict the sharing of the data in the network [24].
Instead, a data supplier connected to a node i can abstract
the time series data within a time window to a finite number
k of real values {pi,1, ..., pi,k}, pi,j ∈ R,∀j ∈ {1, ..., k},
the possible states. For instance, the smart meter power
consumption data of an energy consumer can be abstracted
to three representative power consumption values representing
the low, medium and high energy profiles of the energy
consumer [8]. At every time point, each data supplier selects
one and only one possible state that is the selected state
si = pi,s ∈ {pi,1, ..., pi,k} of node i. The third feature is
based on self-corrective computations performed by migrating
agents, whose parent node leaves or fails. Their goal is to
reverse (rollback) earlier computations performed as long as
their parent node remains disconnected.

The proposed model does not require any major change
in the aforementioned design of DIAS. The peer sampling
service is reused as part of the existing DIAS design. The
communication protocol of the aggregation sessions does not
also require any alteration. Therefore, the design effort focuses
on interfacing the self-adaptation model with the distributed
memory system of DIAS, which relies on probabilistic data

structures, the bloom filters [25]. The memory system is used
by disseminators to select aggregators, among the ones dis-
covered via the peer sampling service, with which aggregation
sessions are established. The memory system of a disseminator
enables the selection of aggregators that either (i) aggregate
for first time a selected state of the disseminator or (ii) have
an outdated selected state from the disseminator and require
the most recent one. The bloom filters allow for any remote
pair of a disseminator and an aggregator to mutually reason
about the following nested scenarios:

Reasoning 1. A disseminator recalls whether an aggregation
session has been earlier performed with a certain aggregator.
Mutually, an aggregator recalls whether an aggregation ses-
sion has been earlier performed with a certain disseminator.

The disseminator and the aggregator perform a local query to
a simple bloom filter that stores aggregator and disseminator
IDs respectively to implement the Reasoning 1.

Reasoning 2. A disseminator recalls which possible state an
aggregator has earlier aggregated. Mutually, an aggregator
recalls which possible state of a certain disseminator has been
earlier aggregated.

In the disseminator side, Reasoning 2 is implemented by a
counting2 bloom filter for each possible state. These bloom
filters store aggregator IDs. In the aggregator side, Reasoning 2
is implemented by a counting2 bloom filter storing IDs of
selected states.

The performance of the DIAS aggregation when aggregators
come online or go offline can be measured with the following
two metrics:

• Accuracy: This is the average relative error of the aggre-
gates computed by the online aggregators and it is defined
by the absolute difference between actual and estimated
values divided by the actual values. The accuracy eval-
uates the effectiveness of the DIAS network to perform
good estimations of the aggregations functions.

2A counting bloom filter allows removal of elements, which is required
when data suppliers change selected states so that they distinguish whether
aggregators have aggregated the most recent selected state.



• Communication cost: The total number of DIAS mes-
sages exchanged between disseminators and aggregators.
The communication cost of DIAS originates from two
messages for every aggregation session performed. The
communication cost of the peer sampling service is out of
the scope of this paper as it is constant and relies entirely
on the execution period [18].

If a data consumer participates in the network, its aggregator
is online. Disseminators can detect it via the peer sampling
service and the aggregator ID present in the received node
descriptor. An aggregation session is initiated for every change
of a selected state performed by the disseminator. In this way,
a high accuracy is preserved.

If a data consumer does not anymore participate in the
network, the aggregator removes its ID from the node de-
scriptor. Over time, the earlier node descriptors containing
the aggregator ID vanish and the latest node descriptors do
not have an aggregator ID. Therefore, no aggregation sessions
are performed. The communication cost is minimized, while
accuracy is not influenced by the aggregators going offline,
given that accuracy is measured by the online aggregators.

IV. EXPERIMENTAL EVALUATION

The peer sampling service3 and the DIAS aggregation
service are implemented in Java using the Protopeer distributed
prototyping toolkit [26]. They are deployed in the Euler4 high
performance cluster infrastructure of ETH Zurich. Experimen-
tation is performed in both operational modes of Protopeer:
(i) simulation and (ii) live. In live mode, every node of the
network runs its own Java virtual machine and communicates
by exchanging network messages using the Apache MINA
library5. The same DIAS implementation is used for both
operational modes, however, the live mode requires several
complex scripts to bootstrap and synchronize the network de-
ployment given various computational constraints that cluster
infrastructures have that are out of the scope of this paper.
Results are mainly illustrated for the simulation mode as they
are free of deployment artifacts. In contrast, the bootstrapping
process of a live experiment requires that all nodes are
online and can communicate with the bootstrap server under
infrastructural and administration constraints such as network
delays, varying computational loading, synchronization issues
and others. A performance comparison between simulation and
live is illustrated in this section.

DIAS is fed with real-world data6 from a state of the
art pilot project about the electricity consumption in Ireland:
the Electricity Customer Behavior Trial (ECBT). The project
ran during the period 2009-2010 with 6435 residential and
small-medium enterprise consumers, from which 3000 res-
idential consumers are used in the illustrated experiments

3Available at https://github.com/epournaras/PeerSamplingService (last ac-
cessed: September 2017

4Available at http://brutuswiki.ethz.ch (last accessed: September 2017).
5Available at https://mina.apache.org (last accessed: September 2017)
6Available at http://www.ucd.ie/issda/data/

commissionforenergyregulationcer/ (last accessed: September 2017)

to decrease the execution time of the experiments. Power
consumption data are collected from smart meters every 30
minutes. Data from date 4.1.2009 are used for the experi-
ments. The total records of raw data used in the experiments
are 2 records/hour*24 hours=48 records. Possible states are
extracted from the raw data by performing clustering with k-
means, where k = 5, using the Weka library7. The motivation
behind using real-world energy consumption data is mainly
the validation with realistic user data. Yet, in the context of
demand-side energy management, DIAS is applicable when
participatory citizens self-organize in a bottom-up way to
support trusted cooperatives and collaborative schemes for
monitoring their collective demand and optimizing their en-
ergy usage [27], [28], [29], [30].

The epoch duration8 is selected to be 1 sec (1/4=0.25
sec for the peer sampling service). A high execution rate
of DIAS improves convergence speed but also increases the
communication rate, which is though minimized to zero after
convergence. Out of the total 800 epochs, the first 100 epochs
are used for system bootstrapping. Aggregation is performed
in the next 14*48=672 epochs. The view size of the peer
sampling service is 50 with a SWAPPER parameter of 24
and a HEALER parameter of 1 [22]. Each of the 3000 nodes
of DIAS is equipped with a disseminator to test the most
demanding scenario. A maximum number of 40 aggregation
sessions per epoch are initiated by each disseminator. Results
for the AVERAGE, SUMMATION and MAXIMUM aggrega-
tion functions are presented.

To stretch the performance of the aggregation performed,
two extreme synthetic demand profiles are introduced: (i)
UP-DOWN and (ii) DOWN-UP. Figure 3a and 3b illustrate
the demand profiles used for the experimental evaluation
of this paper. Both profiles have out of the maximum of
3000 aggregators 1500 online (50%) on average over the 800
epochs. All potential changes in the network are scheduled to
start on the 100th epoch and finish on the 739th epoch. In the
UP-DOWN profile, the number of aggregators is minimum
on the 100th and 739th epoch and maximum on the 419th
epoch. In contrast, in the DOWN-UP phase the number of
aggregators is minimum on the 419th epoch and maximum on
the 100th and 739th epoch. Three scaling strategies (SS) are
evaluated in which a different number of aggregators is added
or removed periodically at different scaling steps such that the
average number of aggregators during runtime is 1500: (i) SS-
1 with period 160 and 1600 nodes per scaling step, (ii) SS-2
with period 80 and 800 nodes per scaling step and (iii) SS-4
with period 40 and 400 nodes per scaling step.

Figure 3c and 3d show how the UP-DOWN and DOWN-
UP demand profiles appear in the live operational mode.
Given that the system is designed to operate in a fully
asynchronous fashion with each node having its own clock,
the demand profiles are not anymore step functions, though

7Available at https://weka.wikispaces.com (last accessed: September 2017)
8The epoch duration would be 30 minutes/14 DIAS executions=2.14

minutes (2.14/4=0.5 minutes for the peer sampling service) if DIAS operated
for ECBT.
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(a) Simulation, UP-DOWN
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(b) Simulation, DOWN-UP
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(c) Live, UP-DOWN
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Figure 3. Number of aggregators over runtime for the three scaling strategies.

they approximate the original designed demand profiles of
Figure 3a and 3b.

Figure 4a illustrates in detail the accuracy of the aggrega-
tion functions for each scaling strategy and demand profile,
whereas, Figure 4b-4d show a more summarizing view of the
accuracy. The following observations can be made: (i) The
average relative error of SUMMATION under UP-DOWN is
34.95% and 54.43% higher than AVERAGE and MAXIMUM
respectively. However, the average relative error of AVER-
AGE under DOWN-UP is 4.58% and 54.04% higher than
SUMMATION and MAXIMUM. (ii) In SUMMATION under
UP-DOWN, the average relative error for SS-1 is 6.64% and
9.67% lower than SS-2 and SS-4 respectively. For DOWN-UP,
SS-1 is 8.10% and 9.45% lower than SS-2 and SS-4 respec-
tively. In AVERAGE under UP-DOWN, the average relative
error for SS-1 is 12.29% and 31.77% higher than SS-2 and
SS-4 respectively. For DOWN-UP, SS-1 is 8.64% and 10.04%
lower than SS-2 and SS-4 respectively. In MAXIMUM, the
difference between the scaling strategies is negligible. (iii)
Compared to the scaling strategies, FIXED that has 3000
aggregators throughout the experiment has on average 20.52%
and 10.93% higher average relative error under UP-DOWN
and DOWN-UP respectively. This is because of the higher
number of aggregators (3000 over 1500) in the network.

Figure 5 illustrates the computed aggregates over runtime.
The plots include the following information: (i) RAW that is
the ‘true’ values of the aggregates computed using as input
the original data. (ii) STATE that is the ‘true’ values of
the aggregates computed using as input the selected states
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(a) Overview
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(b) SUMMATION
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(c) AVERAGE
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(d) MAXIMUM

Figure 4. Accuracy of the three aggregation functions for each scaling
strategy and demand profile.

extracted by clustering the original data. (iii) FIXED that is
the estimated values of the aggregates computed by DIAS with
the maximum of 3000 aggregators online. (iv) The estimated
values of the aggregates using the three scaling strategies.
STATE approximates very well the RAW in SUMMATION
and AVERAGE, whereas in the high values of MAXIMUM the
DIAS approximation deteriorates. The average relative error
between RAW and STATE in MAXIMUM is 4.70%.

Moreover, Figure 5 explains the findings shown in Figure 4.
For instance, at each scaling step during which aggregators
are connected, there are sudden drops in accuracy, which are
especially high in SUMMATION and MAXIMUM, given that
AVERAGE has mainly values in [0, 1]. It is also observed that
during the epochs 100 to 419 in which RAW (and therefore
STATE) change rapidly to lower values (energy consumption
decreases), the drops in accuracy are higher than the more
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(b) SUMMATION, DOWN-UP
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(c) AVERAGE, UP-DOWN
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(d) AVERAGE, DOWN-UP
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(e) MAXIMUM, UP-DOWN
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(f) MAXIMUM, DOWN-UP

Figure 5. Computed aggregates over runtime.

stable aggregates during the epochs 420 to 739. Drops in
accuracy are higher when a higher number of aggregators is
involved in the scaling step and therefore the drop peaks of SS-
1 are higher than the ones of SS-2 and SS-4. These drops are
quantified in Figure 6 that illustrates the average relative error
for each scaling strategy and each scaling step. For instance,
the average relative error of SUMMATION at scaling step
4 under UP-DOWN is 10.70% and 20.27% higher for SS-1
compared to SS-2 and SS-4. The respective error increase for
AVERAGE is 32.74% and 63.49%.

Note also that in both Figure 5 and 6 the scaling strategies
have the capacity to react faster than FIXED in changes of the
selected states (epochs 300 to 500 in Figure5a to 5d). This is
because of the lower number of data consumers, resulting in
a lower number of required aggregate updates in the network.
However, the high accuracy in FIXED is more stable than
the one of the scaling strategies in which the number of
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Figure 6. Accuracy of aggregation functions at each scaling step for different
demand profiles, scaling strategies and demand profiles.

aggregators varies.
Figure 7 shows the communication cost of the scaling

strategies in simulation and live simulation mode. The fol-
lowing observations can be made: (i) At each scaling step
of the strategies in simulation mode, there is a burst in
the communication cost as disseminators discover the joined
aggregators and initiate aggregation sessions with them. This
can be seen in Figure 7a and Figure 7b for UP-DOWN and
DOWN-UP respectively. (ii) In live operational mode, this
effect smooths out due to the asynchronicity of the scaling
events. (iii) The communication cost of FIXED follows the
pattern of the data, meaning the changes of SUMMATION
as shown in Figure 5. The communication cost of FIXED in
simulation and live mode is on average 32.54% and 34.25%
higher than the one of the strategies as a higher number of
aggregators is present in FIXED.

Figure 8 illustrates the total communication cost, aggregated
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(b) DOWN-UP
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Figure 7. Communication cost in simulation and live operational mode for
different scaling strategies and demand profiles.

over all epochs, of the scaling strategies in simulation and live
operational mode. The two plots indicate the following: (i) The
three scaling strategies have on average the same communica-
tion cost as it is required for aggregators to exchange a fixed
number of messages so that aggregates converge to the actual
values, regardless of how aggregators join the network. (ii)
The total communication cost of UP-DOWN and DOWN-UP
between simulation and live mode is comparable. (iii) FIXED
under the live mode has 6.4% higher communication cost than
FIXED under simulation. (iv) The total communication cost
under the live operational mode increases on average 4.4%,
3.8%, 3.0% in SS-1, SS-2, SS-4 respectively compared to
simulation.
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Figure 8. Total communication cost in simulation and live operational mode
for different scaling strategies and demand profiles.

Figure 9 illustrates the difference in accuracy between
the simulation and live operational mode. On average, the
relative error of SUMMATION in live is 34.21% and 37.25%
higher than simulation under UP-DOWN and DOWN-UP
respectively. This is because of the infrastructure lag and
asynchronicity when aggregators join the network that alters
the demand profiles as shown in Figure 3c and 3d.
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(b) DOWN-UP

Figure 9. Accuracy of SUMMATION in simulation and live operational
mode for the two demand profiles.

While in simulation under UP-DOWN the average relative
error of SS-4 is 7.22% and 1.68% higher than SS-1 and
SS-2 respectively, the respective increase for live is 29.13%
and 14.57%. The higher the number of aggregators that
simultaneously join the network, the higher the lag from
asynchronicity effects that increases inaccuracies. This pattern
is also observed in DOWN-UP. The average relative error
of SS-4 in simulation is 7.88% and 1.25% higher than SS-
1 and SS-2 respectively, while in live the respective increase
is 30.0% and 10.89%.

V. COMPARISON WITH RELATED WORK

To the best of authors’ knowledge, there is no other related
method on dynamic computational demand in decentralized
in-network aggregation for a fair and meaningful quantitative
comparison. Therefore, this section focuses on a qualitative
comparison.

The majority of related work [22], [31], [32], [33] on decen-
tralized in-network aggregation relies on static input values, a
static network and static demand. Although a periodic reset
of the aggregation process can encounter to a limited extent
the aggregation dynamics, other research efforts [34], [21],
[35], [14], [20], [23], [36] introduce aggregation mechanisms
that are by-design resilient to node failures and changing of
input values, which are both studied from the perspective of
data suppliers. In contrast, this work studies rigorously decen-
tralized in-network aggregation under dynamic computational
demand, in which the participation of data consumers in the
network varies.

Gossiping communication is introduced in an earlier
model [37] of opportunistic crowd-sensing for smart cities. In
this earlier model, cars, bicycles and pedestrians collect infor-
mation in transit. Gossiping is used to increase the efficiency



of data transmission to stationary stations and therefore it is
mainly applicable for dynamic data supply rather computa-
tional demand. Moreover, the system is restricted to sensing,
in contrast to this work that additionally addresses the compu-
tation of aggregation functions. The Cloud of Things approach
for sensing as a service [38] goes a step further by introducing
an architecture for crowd-sensing and crowd-processing using
gossiping communication for resource discovery. However, the
data processing is designed for batch job execution rather than
collective computations over a decentralized network.

In contrast to the reactive self-adaptive model studied in this
paper, on-demand application-level video multicasting applies
proactive optimal placement of content to improve system
performance [39]. In the context of in-network aggregation,
a more proactive approach may require accurate prediction
models of the data consumers’ participation as well as infor-
mation about how the input data of the aggregation functions
change. Encountering for both of these requirements is a
challenge. The self-adaptation model introduced is totally data-
independent and can react to any change in the computational
demand.

Cloud computing environments often require dynamic re-
source allocation and provisioning to adapt to dynamic de-
mand originated by the number of users, connections, and
requests received [10], [11], [12]. Although resources and
computations are distributed, management is usually central-
ized and therefore optimization techniques are employed for
the resource allocation and provisioning.

VI. CONCLUSION AND FUTURE WORK

This paper concludes that decentralized data analytics de-
signed to be self-adaptive to dynamic computational demand
can provide high accuracy, while communication cost is con-
trolled and minimized. The nodes in a decentralized network
running the proposed self-adaptation model become self-aware
of the online data consumers in the network and therefore
they can orchestrate the data sharing from data suppliers to
data consumers in a peer-to-peer fashion. The model proves
to be simple yet, agile and modular when applied in the
decentralized in-network aggregation service of DIAS. No
major architectural changes required for the applicability of the
model. Experimental evaluation in simulation and a live de-
ployment using data from a real-world smart grid pilot project
confirm the cost-effectiveness of self-adaptation, in terms of
accuracy and communication cost, under extreme variation in
computational demand. Lessons learnt include the following:
(i) The proposed self-adaptation process is more cost-effective
when the network does not undergo major changes in the
shared data. (ii) A lower number of perturbations in compu-
tational demand results in higher performance than a higher
number of perturbations, even if fewer perturbations are more
significant in scale. (iii) Live deployment approximates well
the simulation results and the mismatches mainly originate
from timing and synchronization issues of the deployment
process. The contributions of this paper increase the technical
readiness level of DIAS that aspires to turn fully decentralized

and participatory data analytics into public good using crowd-
sourced computational resources .

Future work concerns the applicability of the self-adaptation
model to other systems beyond DIAS that require adaptation
to varying computational demand such as cloud resource
allocation. Real-world demand profiles of data analytics ser-
vices will also provide an opportunity to evaluate the self-
adaptation model in economic terms. Beyond aggregation
functions, the findings of this paper can provide new insights
on how to perform more complex analytics such as machine
learning [40], [41] over large-scale and highly dynamic de-
centralized networks. The further deployment of DIAS to
larger testbeds and network infrastructures in which users can
participate with smart phones and Internet of Things platforms
such as Nervousnet [42], [43], [2] is ongoing work.
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