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Abstract Cascading failures on techno-socio-economic sys-
tems can have dramatic and catastrophic implications in so-
ciety. A damage caused by a cascading failure, such as a
power blackout, is complex to predict, understand, prevent
and mitigate as such complex phenomena are usually a re-
sult of an interplay between structural and functional non-
linear dynamics. Therefore, systematic and generic measure-
ments of network reliability and repairability against cascad-
ing failures is of a paramount importance to build a more
sustainable and resilient society. This paper contributes a
probabilistic framework for measuring network reliability
and repairability against cascading failures. In contrast to re-
lated work, the framework is designed on the basis that net-
work reliability is multifaceted and therefore a single met-
ric cannot adequately characterize it. The concept of ‘re-
pairability envelope’ is introduced that illustrates trajecto-
ries of performance improvement and trade-offs for coun-
termeasures against cascading failures. The framework is il-
lustrated via four model-independent and application-inde-
pendent metrics that characterize the topological damage,
the network spread of the cascading failure, the evolution of
its propagation, the correlation of different cascading fail-
ure outbreaks and other aspects by using probability density
functions and cumulative distribution functions. The appli-
cability of the framework is experimentally evaluated in a
theoretical model of damage spread and an empirical one of
power cascading failures. It is shown that the reliability and
repairability in two systems of a totally different nature un-
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dergoing cascading failures can be better understood by the
same generic measurements of the proposed framework.
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pairability · network · smart grid · disaster spread ·
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1 Introduction

Cascading failures in techno-socio-economic infrastruc-
tures such as power grids, water/gas networks, economic
markets, traffic systems and other critical infrastructures are
the cause of massive social disruption and unrest, especially
when their cause may be a result of targeted cyber attacks1.
Their cost can be supreme for a society to afford, for in-
stance, a 2003 power blackout in Canada has estimated costs
of $4-$10 billions, with 50 millions of people left without
electricity for up to 4 days (Liscouski and Elliot, 2004). Cas-
cading failures are often a result of non-linear dynamics in
which the interplay between structural and functional ele-
ments of a network is highly complex and challenging to
measure. Given that the introduction of Internet of Things
and pervasive computing in large-scale critical infrastruc-
tures brings unprecedented opportunities for online auto-
mated control, advanced measurements of cascading fail-
ures turns out to be of paramount importance. This paper
introduces a framework for generic, yet highly empirical
measurements of cascading failures that can characterize the
system reliability as well as repairability when preventive
or mitigation strategies are employed against cascading fail-
ures (Pournaras et al, 2013).

1 For instance, US government claims that cyber attacks are the
cause of power outages in Ukraine in 2015: https://ics-cert.us-
cert.gov/alerts/IR-ALERT-H-16-056-01 (last accessed: Decem-
ber 2016)

https://ics-cert.us-cert.gov/alerts/IR-ALERT-H-16-056-01
https://ics-cert.us-cert.gov/alerts/IR-ALERT-H-16-056-01
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The proposed evaluation framework is based on proba-
bilistic measurements that characterize the overall network
reliability and repairability of a system using probability
density functions and cumulative distribution functions com-
puted from empirical data. The overall network characteri-
zation is achieved by evaluating cascading failures triggered
by every possible node or link failure, however, the analy-
sis can be customized to more targeted link failures given
the availability of empirical data (Ren et al, 2013; Dobson
et al, 2007; Nedic et al, 2006) or other models studied in re-
lated work (Wang et al, 2015; Wang and Chen, 2008; Dob-
son et al, 2010). The framework is studied and illustrated
by demonstrating four metrics that capture both topological
and functional aspects of several flow networks: (i) damage
spread, (ii) cascade, (iii) spectral radius and (iv) damage
correlation. The framework does not exclude other relevant
measures, however, this paper shows how these four met-
rics can provide a multifaceted indicator of reliability that
is application-independent. Moreover, this paper studies the
relevance of the proposed framework in measurements of re-
pairability scenarios that have a preventive or mitigation role
against cascading failures. The concept of the repairability
envelope is introduced that defines for a certain preventive or
mitigation action trajectories of performance improvement
or performance trade-offs. The framework is evaluated by
illustrating its applicability in two application scenarios, one
in a theoretical model for disaster spread and one in an em-
pirical model for power cascading failures. It is shown how
the same measurements can characterize the overall system
reliability and repairability in systems with highly diverse
dynamics.

The contributions of this paper are the following:

– A generic probabilistic measurement framework of flow
networks for a multifaceted characterization of network
reliability under cascading failures.

– The concept of repairability envelope that defines the
performance improvement and performance trade-offs
when preventive or mitigation strategies against cascad-
ing failures are employed.

– An expanded evaluation methodology based on the pro-
posed framework that provides new insights on earlier
work (Buzna et al, 2007; Pournaras and Espejo-Uribe,
2016).

This paper is outlined as follows: Section 2 introduces
the proposed measurement framework of cascading failures.
Section 3 studies the applicability and experimentally evalu-
ates the proposed framework in a theoretical model of disas-
ter spread and an empirical model of power cascading fail-
ures. Section 4 compares the measurement framework with
related work. Finally, Section 5 concludes this paper and
outlines future work.

2 Measuring Cascading Failures

Table 1 illustrates the mathematical symbols used for the
rest of this section in the order they appear. Assume a flow
network of n nodes and l links represented by a directed
weighted graph. Each node or link i in the network has a
flow fi and a capacity ci. A cascading failure refers to con-
secutive overflows fi > ci as a result (i) of an initial pertur-
bation in the flow of the network and (ii) T redistributions of
flow occurring over the directed links of the network. A flow
perturbation refer to the removal of one or more nodes/links,
the rewiring of a link, or changes in the flow of one or more
nodes/links. The redistributions of the flow are referred to as
cascade iterations.

This paper focuses on the m− 1 contingency analysis
as the perturbation model of cascading failures, where m is
defined as follows:

m =

{
n if cascade over nodes
l if cascade over links

(1)

This model repeats the following process: a node or link is
removed, the network undergoes a cascading failure, net-
work performance is measured at every cascade iteration,
the network is restored to its initial state and the whole pro-
cess repeats for all m node or link removals. This model
characterizes probabilistically the overall network reliability
and repairability for a broad spectrum of stochastic perturba-
tions. Moreover, an m− 1 contingency analysis can be par-
allelized and efficiently computed in a fully distributed fash-
ion, as well as in real-time if networks are not too large or
computational resources not too limited (Balasubramaniam
et al, 2013; Qin, 2015; Pournaras and Espejo-Uribe, 2016).
The model can be extended to m− x contingency analy-
sis, which however has a higher computational complex-
ity (Huang et al, 2009). Targeted attacks can also be com-
puted via the m−1 contingency analysis by assigning failure
probabilities to each node or link removal. Such probabili-
ties can be computed using empirical data (Ren et al, 2013;
Dobson et al, 2007; Nedic et al, 2006).

2.1 Network Reliability and Repairability

The concepts of network reliability and repairability are mul-
tifaceted and therefore, this paper claims that a single met-
ric cannot capture the dynamics of different application do-
mains. Thus, the reliability and repairability of a network
against cascading failures, studied with the m− 1 contin-
gency analysis model, are measured by a sequence of met-
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Table 1 An overview of the mathematical symbols

Symbol Interpretation
n Number of nodes
l Number of links
i An element: node or link
fi The flow of a node or link i
ci The capacity of a node or link i
T Number of cascade iterations
m Number of network elements: nodes or links
u Metric index
t Cascade iteration index
R Reliability
vu,i,t Value of reliability metric u at cascade iteration t

after element removal i
o Number of metrics measuring reliability and re-

pairability
R̂ Network repairability
v̂u,i,t, j Value of reliability metric u at cascade iteration t

after element removal i with configuration j
fu,t(x) Probability density function for reliability using

metric u at cascade iteration t
fu,i(x) Probability density function for reliability using

metric u after element removal i
f̂u,t, j(x) Probability density function for repairability using

metric u at cascade iteration t with configuration j
f̂u,i, j(x) Probability density function for repairability using

metric u after element removal i with configuration
j

Fu,t(x) Cumulative distribution function for reliability us-
ing metric u at cascade iteration t

Fu,i(x) Cumulative distribution function for reliability us-
ing metric u after element removal i

F̂u,t, j(x) Cumulative distribution function for repairability
using metric u at cascade iteration t with configu-
ration j

F̂u,i, j(x) Cumulative distribution function for repairability
using metric u after element removal i with con-
figuration j

m̂ Number of survived nodes or links after a cascad-
ing failure

pi,t Probability to progress to the cascade iteration t
after element removal i

Ai,t Network adjacency matrix after element removal i
at cascade iteration t

ρ(Ai,t) Spectral radius after element removal i at cascade
iteration t

λn The nth eigenvalue of the adjacency matrix
rxy Pearson correlation coefficient

rics, where each metric u is measured after the removal of
node/link i at the tth cascade iteration:

R = vu,i,t ,

∀t ∈ {1, ...,Ti},
∀i ∈ {1, ...,m} and

∀u ∈ {1, ...,o},

(2)

where Ti is the number of cascade iterations for the removal
of node/link i, m is the number of each individual node or
link removal for the m−1 contingency analysis and o is the

number of metrics that characterize network reliability. Net-
work repairability R̂ refers to the increase of reliability R
using preventive and mitigation strategies against cascading
failures. It is measured as follows:

R̂ = v̂u,i,t, j− vu,i,t ,

∀t ∈ {1, ...,Ti},
∀i ∈ {1, ...,m},
∀u ∈ {1, ...,o} and

∀ j ∈ {1, ...,k},

(3)

where v̂u,i,t, j,∀t ∈ {1, ...,Ti},∀i ∈ {1, ...,m},∀u ∈ {1, ...,o}
and ∀ j ∈ {1, ...,k} is the reliability of the network when
preventive and mitigation strategies are employed. The ad-
ditional dimension j ∈ {1, ..,k} is the number of configura-
tions in which a preventive or mitigation strategy can oper-
ate. A configuration may represent a parameter tuning for
improving performance or making a trade-off. The values of
the metrics for all configurations form the envelope of re-
pairability.

Given these fine grained measurements, the reliability
and repairability can be illustrated with the following prob-
ability density functions:

fu,t(x) = P(vu,t = x), fu,i(x) = P(vu,i = x), (4)

f̂u,t, j(x) = P(v̂u,t, j = x), f̂u,i, j(x) = P(v̂u,i, j = x), (5)

where the probability density functions can be computed us-
ing the measurements of the m−1 contingency analysis for
a certain cascade iteration t, or using the measurements of
the cascade iterations for a certain node/line removal i. Al-
ternatively, a formulation with the cumulative distribution
function can be given as follows:

Fu,t(x) = P(vu,t ≤ x), Fu,t(x) = P(vu,t ≤ x), (6)

F̂u,t, j(x) = P(v̂u,t, j ≤ x), F̂u,i, j(x) = P(v̂u,i, j ≤ x), (7)

The rest of this section illustrates four metrics that can be
included in the aforementioned expressions to characterize
the reliability and repairability of several real-world com-
plex networked systems.
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2.2 Metrics

This paper illustrates four metrics for measuring network re-
liability and repairability under cascading failures: (i) dam-
age spread, (ii) cascade, (iii) spectral radius and (iv) dam-
age correlation. Although several other metrics (Yan et al,
2014; Mazauric et al, 2013; Youssef et al, 2011; Wang et al,
2015) can be used, this paper focuses on the aforementioned
four ones that are model-independent and cover both topo-
logical and flow dynamics in networks undergoing cascad-
ing failures.

2.2.1 Damage spread

This metric concerns the probability of decreasing the per-
centage of remaining nodes or links, the nodes or links sur-
vivability, over the iterations of the cascade. It is defined as
follows:

v1,t = ∑
x

F1,t(x)∆x−∑
x

F1,t−1(x)∆x, (8)

where x represents the nodes or links survivability m̂i
m with

m̂i ≤ m the number of nodes or links survived after removal
of node or link i. ∆x is the integration step of the cumula-
tive distribution function over the iterations of the cascading
failure.

2.2.2 Cascade

This metric concerns the probability of advancing the itera-
tion of a cascading failure. It is defined as follows:

v2,t =
1
m

m

∑
i=1

pi,t , (9)

where:

pi,t =

{
1 if cascade progresses to t

0 otherwise
(10)

represents the progress or not of the cascade to the next iter-
ation after the removal of node or link i.

2.2.3 Spectral radius

This is a graph spectral metric calculated by the largest eigen-
value of the adjacency matrix Ai,t of the network: ρ(Ai,t) =

max{|λ1|, ..., |λni |}. By performing an n−1 contingency anal-
ysis, the spectral radius can be illustrated by the cumulative
distribution function as follows:

v3,t = F3,t(x), (11)

where x are the values of the ρ(Ai,t) for each removal of node
i. Note that the measurements of the spectral radius can be
also expressed with the area increase or decrease of the cu-
mulative distribution function as expressed in Equation (8)
for the damage spread:

v3,t = ∑
x

F3,t(x)∆x−∑
x

F3,t−1(x)∆x, (12)

2.2.4 Damage correlation

Damage correlation computes the Pearson correlation coef-
ficient rxy between two vectors x and y of node or link values:

v4,t = rxy, (13)

where the vectors represent the status of the network after
a node or link removal i and j respectively. Several relevant
metrics for nodes and links can be used to measure the val-
ues of the vectors, for example, a binary variable denoting if
the nodes or links fail during a cascading failure or the ratio
fi
ci

that denotes the utilization of the nodes or links.

3 Applicability and Experimental Evaluation

The proposed measurement framework is evaluated on the
basis of two illustrations: (i) The applicability of the cas-
cading failure measurements in two use cases, one in a the-
oretical state-of-the-art model (Buzna et al, 2007) of dis-
aster spread and one in the application domain of power
networks (Pournaras and Espejo-Uribe, 2016). (ii) Quanti-
tative results on reliability and repairability for each of the
two use cases. The goal of this section is to make a proof-
of-concept and inspire community to expand the proposed
framework with new reliability and repairability metrics as
well as further use cases. The results illustrated in this paper
are new and they are not shown in the primary earlier work
of the two use cases. The measurements shown in this sec-
tion are agnostic and independent of the two very different
use cases, in contrast to the primary earlier work in which
model-dependent measurements are performed.

The proposed framework2 is implemented using the SFI-
NA framework3, the Simulation Framework for Intelligent
Network Adaptations (Pournaras et al, 2017). Experiments
ran on a MacBook Pro, 2.3 GHz Intel Core i5 with 4 GB
RAM. Cascading failures are visualized with an implemented
integration4 of Gephi in SFINA. In this paper, ‘baseline’

2 Available at https://github.com/SFINA/Flow-Monitor (last
accessed: December 2016)

3 Available at https://github.com/SFINA (last accessed: De-
cember 2016)

4 Available at http://gephi.github.io (last accessed: December
2016)

https://github.com/SFINA/Flow-Monitor
https://github.com/SFINA
http://gephi.github.io
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refers to the networks undergoing cascading failures with-
out any repairability strategy applied.

3.1 Theoretical model: disaster spread

The theoretical model for disaster spread is evaluated on two
artificial networks: (i) Barabási-Albert and (ii) small world.
The two networks have 100 nodes and 100 bidirectional
links. The Barabási-Albert network is built with a probabil-
ity of 0.15 that a new node added is connected to an existing
node. The small world network is built with a rewiring prob-
ability of 0.15 and mean degree of 3.

According to the damage spread model, each node cal-
culates a set of coupled differential equations. Each equa-
tion governs the change of ‘damage’ in a node over time.
Each node is characterized by a damage level and a toler-
ance threshold θ with an α gain parameter over which the
node is fully damaged. Moreover, each node has a recovery
rate τstart and the spread of the damage in interconnected
nodes is a function of the node degree. Each link is charac-
terized by the connection strength, a time delay ti j and the
β parameter that models the physical characteristics of the
surrounding. The a and b fit parameters weight the influence
of node degree on the disaster spread process. More infor-
mation about the mathematical model and its parameters is
out of the scope of this paper. They are defined in detail in
Equation (2) of the earlier work (Buzna et al, 2007).

The m− 1 contingency analysis introduces a damage
level of 4.0 in a node and repeats the process for all nodes.
The parameters of the model are illustrated here for the re-
peatability of results. Node parameters are chosen as α = 5,
β = 0.025, θ = 0.5 and τstart = 4. Link parameters are cho-
sen as a connection strength of 0.5, ti j from a χ2 distribu-
tion with µ = 4, a scaling factor of 0.05 and a translation
factor of 1.2. Moreover, it is set a = 4 and b = 3. Two re-
pairability strategies5 are employed from the earlier pub-
lished work: (i) strategy A and (ii) strategy B. The strate-
gies are implemented as SFINA applications by extending
the simulation agent so that they can be reused by other dis-
aster spread models in the future. This flexibility is the re-
sult of the generic and modular design of SFINA Pournaras
et al (2017). The strategies define resources for recovery
from a resource distribution function r(t) = a1tb1e−c1t , with
a1 = 10, b1 = 0.5 and c1 = 0.03. Parameter a1 is the one
varied to compute the envelope of repairability. The equa-
tion and parameters model an initial exponential increase
and a gradual decay of resources over time. Resources are
supplied after the 10th simulation step. Finally, the recov-
ery rate of a node at a specified time is given by 1/τi(t) =
1/(τstart − β2)e−α2Ri(t) + β2 with α2 = 0.58 and β2 = 0.2.

5 These strategies correspond to the strategy 3 and 4 in the earlier
work (Buzna et al, 2007)

These parameters are evaluated earlier to give an efficient
response to disaster spread.

Figure 1 illustrates the likelihood of damage spread for
the two artificial networks. In the Barabási-Albert network
of Figure 1a, the two repairability strategies decrease the
overall damage spread by 8.7% and 9.1% respectively, how-
ever, the damage spreads rapidly over the hub nodes of the
network. The damage increasingly spreads during the first
20 iterations, while at the later cascade iterations the recov-
ery process minimizes the spread. On the other hand, the
small world network of Figure 1b has lower levels of dam-
age spread with the strategies providing a higher repairabil-
ity compared to the Barabási-Albert network: 17.5% and
34.4% respectively.
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Fig. 1 Likelihood of damage spread for the two artificial networks us-
ing strategy A and B.

The damage spread and damage correlation measure-
ments are validated quantitatively and qualitatively in Ap-
pendix B for a Barabási-Albert and a small world network.

In case the resources available for the recovery can in-
crease using higher values of a1, the envelope of self-re-
pairability is formed according to Figure 2. The Barabási-
Albert network of Figure 2a has a broadening envelope as
damage spread increases and a narrowing envelope as the
damage spread decreases. The same holds for the small world
network of Figure 2b that has overall broader envelope even
if lower values of the a1 parameter are used.

In contrast to the evaluation methodology illustrated in
the original earlier work (Buzna et al, 2007), the reliabil-
ity and repairability of two different artificial networks with
different settings are illustrated without measuring model-
specific parameters but rather generic metrics that equip the
proposed framework. The rest of this section illustrates how
the same metrics can characterize the reliability and repairabil-
ity in an empirical networked system of a totally different
nature: power systems undergoing cascading failures and us-
ing smart transformers for system self-repair.
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Fig. 2 Repairability envelopes for the two artifical networks and strat-
egy B by varying the parameter a1.

3.2 Empirical model: power cascading failures

In the use case of power networks, three IEEE reference net-
works are used6: (i) case-39, (ii) case-57, (iii) case-118 and
(iv) case-2383. Case-39 has capacity information referred to
as link rating, while the rest of the networks use the α = 2.0
parameter that computes the link capacities based on the
load profile of the networks. All power networks run AC
power flow analysis except case-2383 that runs DC power
flow analysis for faster performance and convergence. In all
cases, the power flow analysis runs using the InterPSS7 (Zhou
and Zhou, 2007) SFINA backend.

The m− 1 contingency analysis is applied by remov-
ing a link and repeating the process for all links. The sim-
ulation model of cascading failures is illustrated in earlier
work (Pournaras and Espejo-Uribe, 2016) and it concerns
redistribution of power flows after link failures caused by
flows overpassing link capacities, the line ratings. For the
repairability of the case-39 network against cascading fail-
ures, 5 coordinating smart transformers are introduced in a
random placement8. The smart transformers control and col-
lectively optimize the phase angle of the link they reside on
to improve reliability (Pournaras and Espejo-Uribe, 2016).
The envelope of repairability is computed by varying the
penalty parameter λ of the optimization, with the default
value being λ = 1.0. This parameter controls the penaliza-
tion applied in the magnitude of change in the phase angle.
Strategy B from earlier work (Pournaras and Espejo-Uribe,
2016) is used in the performed experiments.

Figure 3 illustrates the likelihood of damage spread and
cascade in the three power networks. Case-57 has the high-
est disaster spread followed by case-118 and case-2383. It is
evident that the size of the network plays a role here given

6 Available at http://www.pserc.cornell.edu/matpower/
docs/ref/matpower5.0/menu5.0.html (last accessed: December
2016)

7 Available at http://www.interpss.com (last accessed: Decem-
ber 2016)

8 Several such placements are evaluated in earlier work (Pournaras
and Espejo-Uribe, 2016).

that the m− 1 contingency analysis always removes a sin-
gle link. Line failures spread further in case-2383 with the
highest size, however, the percentage of links affected is still
lower than case-118 and case-57 that have a lower size.
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Fig. 3 Likelihood of damage spread and cascade for three networks
under cascading failure.

The damage spread in Figure 3a is computed based on
Equation (8). The original cumulative distribution functions
for link survivability based on which Equation (8) is com-
puted are illustrated in Figure 4a, 4c and 4e. For each of
these plots, the respective plot for the spectral radius is shown
as well. The plots show the evolution of the cascading fail-
ures by increasing probabilities values of the lower link sur-
vivability values at the later cascade iterations. The spectral
radius shows a similar trend. Case-57 has lower values of
spectral radius than case-118.

Figure 5 illustrates the damage correlation for case-57
and case-118. Due to the large network size, case-2383 does
not show significant influence on damage correlation and
therefore, results are not shown. The damage correlation map
in case-57 remains similar during the evolution of the cas-
cading failure. In contrast, the damage correlations of case-
118 shift to different link pairs at the last iteration of the
cascading failure.

Figure 6 illustrates the visualization of the two network
at two different iterations of a cascading failure. The at-
tacked link is indicated at iteration 1 with red color followed
by several other red trimmed links at iteration 5 in case-47
and case-118.

Network repairability is applied by using coordinated
smart transformers. Figure 7 shows the improvement in re-
pairability. In Figure 7a, the likelihood of increasing damage
spread is 37.5% lower when smart transformers are used.
Figure 7b confirms that the cascading failure terminates at
iteration 2 instead of iteration 6 thanks to smart transform-
ers.

Figure 8 illustrates the evolution of the spectral radius
with and without smart transformers. By mitigating cascad-
ing failures, the spectral radius remains at high values through-
out the iterations of the cascading failure.

http://www.pserc.cornell.edu/matpower/docs/ref/matpower5.0/menu5.0.html
http://www.pserc.cornell.edu/matpower/docs/ref/matpower5.0/menu5.0.html
http://www.interpss.com
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Fig. 4 Evolution of the cumulative distribution functions of link sur-
vivability and spectral radius in three networks under cascading failure.

Figure 9 illustrates the damage correlation matrix. It is
shown that the flow redistributions, which smart transform-
ers perform create highly uncorrelated link failures. This is
because each local control of the phase angle in a link results
in a global flow redistribution in the optimization space that
are in contrast to the default redistributions computed by the
cascading failure model.

Figure 10 visualizes a cascading failure in case-39 with-
out and with smart transformers. It is clearly shown that a
fewer number of links are trimmed when smart transformers
are used.

In this empirical scenario, computing the envelope of
self-repairability is a way to visually evaluate parameter fit-
ting for the optimization process that controls the phase an-
gles of the smart transformers. For this purpose, different
λ values are tested and aggregated to the envelope of Fig-
ure 11. It is confirmed that low values of the penalty parame-
ter achieve higher repairability, which is a result of allowing
higher magnitudes of changes on the phase angle.
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Fig. 5 Damage correlation in three networks under cascading failure.

(a) Case-57, iteration 1 (b) Case-57, iteration 5

(c) Case-118, iteration 1 (d) Case-118, iteration 5

Fig. 6 Visualization of cascading failures in two networks. The size
and thinkness of the lines is proportional to the power flows served.
Trimmed links are indicated with red color. Generators inject power
flows, slack buses balance power flows and buses transfer and consume
them.

The applicability of the framework measurements in this
empirical model of power cascading failures confirms its
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Fig. 7 Likelihood of damage spread and cascade in case-39 with and
without smart transformers.
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Fig. 8 Evolution of spectral radius in case-39 with and without smart
transformers.
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Fig. 9 Damage correlation in case-39 with and without smart trans-
formers.

generic design and its flexibility to characterize the multi-
faceted aspects of network reliability and repairability against
cascading failures. Regardless of DC or AC power flows,
the network type, the use of smart transformers for balanc-
ing flow distributions, or even the optimization applied for
these flow redistributions, the same framework is capable of
characterizing, as well as, comparing system reliability and
repairability.

4 Comparison with Related Work

Several application-independent metrics are introduced in
the research area of flow networks, which are applicable
for use in the proposed framework, for instance through-

(a) Without smart transformers (b) With smart transformers

Fig. 10 Visualization of a cascading failure in case-39 without and
with smart transformers.

 =2

 =150
 =175λ

λ

λ  =50

λ

Fig. 11 Repairability envelope in case-39 without and with smart
transformers of different λ parameter.

put (Todinov, 2013; Huseby and Natvig, 2013), however
they have not been studied in the context of cascading fail-
ures. Other metrics such as the Birnbaums, BarlowProschan
and the Natvig measures characterize the reliability of a net-
work in respect to the failure or repair of an individual com-
ponent. Kuo and Zhu (2012) classify importance measures
in reliability into structure, reliability and lifetime types based
on the knowledge that determines them. Given that the pro-
posed framework focuses on the overall characterization of
system reliability and repairability, such metrics are highly
relevant when they measure global system properties rather
than component reliability as well as they do not depend on a
specific model or scenario. Moreover, note that the applica-
bility of several of these metrics require fine-grained empir-
ical data, for instance, repair and failure rates of individual
components.

Metrics for measuring reliability against cascading fail-
ures are earlier introduced. Wang et al (2015) study cascad-
ing failures in power grids and introduce the normalized,
to the load profile of the network, served power demand
as a reliability measure. In contrast to this work, measure-
ments for the evolution of the cascade are not studied and
the attack model is based on the node significance central-
ity of a single link, whereas, the proposed framework pro-
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vides an overall probabilistic estimation of reliability using
the m−1 contingency analysis. This is also the case for the
work of Zhang et al (2014) that measures the percentage
of failures in the network and correlates complex networks
with reliability measures. Cascading failures are triggered
by random node selections or selections based on node de-
grees. No information about the evolution of the cascading
failures is measured.

Wang and Chen (2008) introduce a robustness metric
that models link weights based on the node degrees of the
associated nodes. Cascading failures are triggered using the
sandpile model by adding flows incrementally. Although this
model can be used in analyses of how node degrees influ-
ence the reliability of flow networks, the use of empirical
data shown in this work can provide more direct, accurate
and model-independent calculations of reliability.

Dobson et al (2010) introduce a statistical estimator to
quantify the propagation of cascading failures in power trans-
mission lines. Their model relies on Poisson distribution for
the propagation of failures, which may not hold for differ-
ent flow network models, cascading processes or applica-
tion domains. The networks evaluated are low in size and
require parameter tuning, for instance the saturation param-
eter. In contrast, the measurements proposed in this paper
are model-independent, therefore, they have a higher appli-
cability.

Youssef et al (2011) illustrate a robustness measure for
power grids with respect to cascading failures. This work
draws several parallels with the work proposed in this pa-
per, for instance, a probabilistic model for link survivals is
shown. Moreover, the depth of the cascading failure is mea-
sured and links are ranked according to their failure proba-
bilities under cascading failures. However, this earlier work
is limited to DC power flows and it is mainly a topological
analysis of the network, in contrast to the proposed frame-
work that is illustrated for several application-independent
metrics.

In respect to network repairability and related work on
repairability envelopes illustrated in this paper, Trajanovski
et al (2013) introduce robustness envelopes by computing
approximate network performance probability density func-
tions as functions of the fraction of nodes removed. The ro-
bustness envelopes and targeted attack responses are com-
puted by network rewiring to increase or decrease degree
assortativity. This is mainly a topological and graph spectral
analysis, in contrast to the envelopes of this work that cap-
ture functional aspects of the network operations and repair
mechanisms. Ulanowicz et al (2009) introduce the concept
of ‘window of vitality’ that circumscribes sustainable be-
havior in ecosystems. The window of vitality is studied in
the context of biological ecosystems, however, the concept
could be used to heuristically show how different networks
and configurations are reliable given different scenarios.

5 Conclusion and Future Work

This paper concludes that the proposed measurement frame-
work is generic and can capture multifaceted aspects of net-
work reliability, as well as repairability, in complex systems
undergoing cascading failures. This is shown by the applica-
bility of the framework and extensive measurements in a the-
oretical model of disaster spread and an empirical model of
power cascading failures. It is shown that the same measure-
ments can provide new insights about system reliability and
repairability as well as a better understanding on the evolu-
tion of cascading failures in several networks. This comes in
contrast to related work in which measurements do not cap-
ture the evolutionary aspects of cascading failures and are
often tailored to the model under scrutiny or the application
domain.

Future work includes the expansion of the framework
with other probabilistic measurements and the evaluation of
other attack models that use real-world empirical data on
triggering cascading failures. The feasibility of the frame-
work in real-time system operations for distributed monitor-
ing and online automated decision-support is also subject of
future work (Pournaras, 2013).
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A Theoretical Model: Damage Correlation

To better understand the spreading dynamics, the evolution of damage
correlation for the two artificial networks is shown in Figure 12 and
Figure 13. The two figures show how correlated the spreading of net-
work damages are in all possible pairs of perturbations in the network
and how the correlations evolve during the cascading failure.

Figure 12 confirms that the hubs of the Barabási-Albert network
result in highly positively correlated processes of damage spread, which
are actually due to the high levels of damage diffused in the network.
When the recovery process takes place, there is a low increase in the
average correlations for strategy B compared to baseline, for instance,
3.95% at the 30th cascade iteration compared to 0.5% at the 20th iter-
ation.

Figure 13 confirms that the damage spread in small world net-
works has a strong locality influence. The damage of neighboring nodes
results in correlated spread of damages as it can be clearer seen in Fig-
ure 13a, 13e and 13i. As the spread of the damage increases according
the trajectories of Figure 1b, the correlation of the damages becomes
more polarized and vary between highly positive and negative correla-
tion in different parts of the network. Strategies decrease correlations
compared to the baseline, for instance, 25.44% at the 30th cascade iter-
ation and 41.5% at the 70th iteration for strategy B. However, damage
correlations increase on average during the cascading failure, for ex-
ample, 87% and 83.6% for baseline and strategy B respectively and
from the 30th to the 70th iteration of the cascading failure.

B Theoretical Model: Network Visualizations

Figure 14 and Figure 15 show the two artificial networks in the respec-
tive cascade iterations that are also shown for the damage correlations.
The initial damaged node is node 7.
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(a) Baseline, iteration 12

 

 

 

 

 

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100 1.0

 0.5

 0.0

 -0.5

 -1.0

node x

no
de

 y

(b) Baseline, iteration 20
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(c) Baseline, iteration 30

 

 

 

 

 

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100 1.0

0.5

0.0

-0.5

-1.0

node x

no
de

 y

(d) Baseline, iteration 100
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(e) Strategy A, iteration 12
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(f) Strategy A, iteration 20
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(g) Strategy A, iteration 30
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(h) Strategy A, iteration 100
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(i) Strategy B, iteration 12
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(j) Strategy B, iteration 20

 

 

 

 

 

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100 1.0

0.5

0.0

-0.5

-1.0

node x

no
de

 y

(k) Strategy B, iteration 30
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(l) Strategy B, iteration 100

Fig. 12 Damage correlation in the Barabási-Albert network at different cascade iterations. (a)-(d) Baseline, (e)-(h) strategy A and (i)-(l) strategy
B.
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(a) Baseline, iteration 15
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(b) Baseline, iteration 30
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(c) Baseline, iteration 70
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(d) Baseline, iteration 100
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(e) Strategy A, iteration 15

 

 

 

 

 

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70
80

90

100 1.0

0.5

0.0

-0.5

-1.0

node x

no
de

 y

(f) Strategy A, iteration 30
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(g) Strategy A, iteration 70
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(h) Strategy A, iteration 100
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(i) Strategy B, iteration 15
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(j) Strategy B, iteration 30
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(k) Strategy B, iteration 70
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Fig. 13 Damage correlation in the small world network at different cascade iterations. (a)-(d) Baseline, (e)-(h) strategy A and (i)-(l) strategy B.
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Fig. 14 Visualization of cascading failure in the Barabási-Albert net-
work. (a), (d), (g), (j): Baseline, (b), (e), (h), (k) strategy A and (c), (f),
(i), (l) strategy B. The pallete indicates the damage level of the nodes
in the range [0,4].

The Barabási-Albert network in Figure 14 clearly shows that the
damage of the peripheral node influences the neighboring nodes (Fig-
ures 14d, 14f), however, as the central hub is only two hops away from
the damaged node, the damage spreads and eventually affects severely
the whole network already at the 20th iteration (Figures 14g, 14i). The
repairability strategies can only alleviate the damage level of individual
nodes and therefore, they do not restrict the cascading disaster.
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Fig. 15 Visualization of cascading failure in the small world network.
(a), (d), (g), (j): Baseline, (b), (e), (h), (k) strategy A and (c), (f), (i), (l)
strategy B. The pallete indicates the damage level of the nodes in the
range [0,4].

In contrast, the small world network of Figure 15 shows that the
damage spread is in general localized at a higher level than the Barabási-
Albert network. Strategy B maintains the lowest damage level in the
nodes as also confirmed by Figure 1b.
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