
An Ubiquitous Multi-Agent Mobile Platform for Distributed Crowd Sensing and
Social Mining

Stefan Bosse

University of Bremen, Department of Mathematics &
Computer Science
Bremen, Germany

sbosse@uni-bremen.de

Evangelos Pournaras
Professorship of Computational Social Science

 ETH Zürich
Zürich, Switzerland
epournaras@ethz.ch

Abstract—Smart mobile devices are fundamental date sources
for crowd activity tracing. Large-scale mobile networks and
the Internet-of-Things (IoT) expand and become part of perva-
sive and ubiquitous computing offering distributed and trans-
parent services. With the IoT, Crowd Sensing is extended by
Things Sensing, creating heterogeneous smart environments. A
unified and common data processing and communication
methodology is required so that the IoT, mobile networks, and
Cloud-based environments seamlessly integrate, which can be
fulfilled by self-organizing mobile agents, discussed in this
work. Currently, portability, resource constraints, security,
and scalability of Agent Processing Platforms (APP) are essen-
tial issues for the deployment of Multi-agent Systems (MAS) in
highly heterogeneous networks. Beside the operational aspects
of MAS, an organizational structure is required for the de-
ployment of MAS in crowd sensing and social mining applica-
tions. The Planetary Nervous system (Nervousnet) consists of
virtual sensors building the core functionality for such applica-
tions running on smart phones with a Cloud-like architecture.
The virtual sensors enable a holistic composition and model-
ling approach. Self-organizing and adaptive mobile agents are
well known as the core cells of holistic and modular systems. In
this work, both concepts are combined. JavaScript agents are
introduced as virtual sensors in the Nervousnet environment,
evaluated with a simulation of a distributed sensor fusion use-
case in a mobile network based on real-world data from Nerv-
ousnet, showing the suitability of the hybrid approach, benefit-
ing from local and event-based sensor processing performed by
the MAS.

Keywords- Crowd Sensing, Pervasive Computing, Ubiquitous
Computing, Agents, Self-organizing systems

I.INTRODUCTION

Mobile networks, wearable devices, and the Internet-of-
Things get more and more pervasive in today’s digital socie-
ty. Millions of devices can contribute to pervasive and ubiq-
uitous computing, forming one big machine, which offers
distributed and transparent services. These networks are
highly dynamic with loosely coupled ad-hoc connectivity
(temporal networks) and inter-communication, producing a
large amount of data, often with a low degree of data corre-
lation. Classical distributed systems can deal with a large
amount of data, but do not meet the requirements for these
dynamic and loosely coupled environments. Agents and
distributed agent-based systems are already deployed suc-
cessfully in heterogeneous large-scale environments, e.g.,

production and manufacturing processes [1], or the control
of manufacturing processes [2], facing manufacturing,
maintenance, evolvable assembly systems, quality control,
and energy management aspects, and in sensing applica-
tions, e.g., monitoring of mechanical structures and devices
[3]. Finally the paradigm of industrial agents meeting the
requirements of modern industrial applications by integrat-
ing sensor networks was introduced [4].

Newer trends show the suitability of Multi-agent Systems
(MAS) in crowd sensing applications, e.g., [5], implement-
ing different roles of crowd sensing campaigns with agents.
The agents control sensing, collect and distribute data. But
the agents and the software framework (Agent processing
Platform, APP) rely on Internet services, not always availa-
ble, limiting the use space. A light weighted approach and
APP is required for a wide-area deployment, enhanced by a
distributed adaptive organizational structure.

In large-scale dynamic networks an organizational struc-
ture is required for interaction and communication. In [6]
sensors are considered as devices used by an upper layer of
controller agents. Agents are organized according to roles
related to the different aspects to integrate, mainly sensor
management, communication and data processing. This or-
ganization isolates and decouples the data management from
changing networks, while encouraging reuse of solutions.

Most crowd sensing platforms are using cloud- or cen-
tralized data base approaches for the aggregation and pro-
cessing of user and sensor data, e.g., McSense [7] or Nerv-
ousnet [8], based on a client-to-server architecture, though
supporting distributed pre-processing.

The Planetary Nervous System (Nervousnet) is an envi-
ronment and platform consisting of sensors that process a
set of input streams of data generated from physical or vir-
tual sensors. The environment defines the context within
that the virtual sensor operates to generate its output stream
[8]. The platform provides ubiquitous social mining as a
public service. Sensing systems consist of three different
functional layers: Sensing, Aggregation, and Application.
All three layers can be represented by virtual sensors and
agents.

Data sharing, data collection, and data fusion are main
building blocks of such a system. In contrast to traditional
embedded sensor networks, social mining in public net-
works requires privacy rules, as discussed in [9].

Figure 1. Unified MN/IoT/ Cloud Distributed Perception and Information Processing with mobile agents, the JavaScript (JS) Agent Machine Platform
(JAM) and the Nervousnet Service as the organizational layer composed of virtual sensors, represented in this work with JAM agents.

Sensing devices, e.g., smart phones, commonly interact
with a Cloud-like service architecture (device-to-cloud
communication).

Crowd sensing has already been successfully applied to
different purposes. In [10], smart phones were used to com-
pose a seismic network in urban environments for spatially
fine-grained earthquake monitoring. But as in the current
Nervousnet approach, the distributed data is evaluated either
locally or at a central instance. With the emerging IoT,
Crowd Sensing is extended by Things Sensing. Distributed
data mining and Map-Reduce algorithms are well suited for
self-organizing MAS. Cloud-based computing with MAS,
e.g., as a base for crowd sensing and participatory social
mining use cases, means the virtualization of resources, i.e.,
storage, processing platforms, sensing data or generic in-
formation. Mobile Agents reflect a mobile service architec-
ture. Commonly, distributed perceptive systems are com-
posed of sensing, aggregation, and application functional
layers, shown in Fig. 1.

But IoT, mobile, and Cloud environments differ signifi-
cantly in terms of resources: The IoT and mobile networks
consist of a large number of low-resource devices interact-
ing with the real world and having strictly limited storage
capacities and computing power, and the Cloud consists of
large-scale computers with arbitrary and extensible compu-
ting power and storage capacities in a basically virtual
world. A unified and common data processing and commu-
nication methodology is required to merge the IoT with

Cloud environments seamlessly, fulfilled by the mobile
agent-based computing paradigm, addressed in this work.

The scalability of complex ubiquitous applications using
such large-scale cloud-based and wide area distributed net-
works deals with systems deploying thousands up to million
agents. But the majority of current laboratory prototypes of
MAS deal with less than 1000 agents [2]. In the past, many
traditional processing platforms could not handle a big
number of agents with the robustness and efficiency re-
quired by the industry [2] and Cloud applications. In the
past decade the capabilities and the scalability of agent-
based systems have increased substantially, especially ad-
dressing efficient processing of mobile agents. The integra-
tion of perceptive and mobile devices in the Internet raises
communication and operational barriers, which must be
overcome by a unified agent processing architecture and
framework, discussed in this work.

In this work the behaviour of mobile agents are modeled
with dynamic Activity-Transition Graphs (ATG), which are
directly implemented in JavaScript (JS) program code hold-
ing the entire control and data state of an agent (Fig. 1, right
side). The used agent model bases on the mobile processes
model introduced by Milner [11]. The code can be modified
by the agent itself using code morphing techniques required
for behaviour adaptation (directly supported by JavaScript
Just-in-time and Bytecode Compiler VM platforms). The
code is capable of migration in the network between nodes
required for distributed data processing. This approach re-
quires only a minimal Agent Processing Platform Service

(APPS). The AgentJS code can be directly executed by the
underlying JS VM (e.g., node.js, jxcore, JVM, webview for
mobile App. development, or spidermonkey used in brows-
ers).

Agents operating on a particular node can interact and
synchronize by using a tuple-space, which were proposed in
[12] and [13] as a suitable MAS interaction and co-
ordination paradigm. This approach provides a high degree
of computational independency from the underlying plat-
form and other agents, and enhanced robustness of the entire
heterogeneous environment in the presence of node, sensor,
link, data processing, and communication failures.

A sensor network as part of the IoT is composed of nodes
capable of sensor processing and communication. Modern
mobile phones (smart phones) are equipped with multiple
sensors. Hence a mobile network consisting of smart phones
can be considered a sensor network, too. Smart systems and
environments are composed of more complex networks (and
networks of networks) differing significantly in computa-
tional power and available resources, rising inter-
communication barriers. They provide higher level infor-
mation processing that maps the raw sensor data to con-
densed information. They can provide, e.g., Internet connec-
tivity of perceptive systems (body area networks...). These
smart systems unite sensing, aggregation, and application
layers [14], offering a more unified design approach and
more generic and unified architectures. Smart systems glue
software and hardware components to an extended opera-
tional unit, the basic cell of the IoT.

The central approach in this work focuses on mobile
agents and the ability to support mobile reconfigurable code
embedding the agent behaviour, the agent data, the agent
configuration, and the current agent control state, finally
encapsulated in portable JavaScript code. The mobility is
granted by converting the agent program in a textual JSON+
representation, and finally by parsing this text and executing
the code again. This agent-specific mobile program code
can be executed on a variety of different host platforms in-
cluding mobile devices, embedded devices, sensor nodes,
and servers, using JAM and a JS VM, bridging the gap be-
tween the IoT and Cloud infrastructures.

One of the major challenges in sensing systems is the
derivation of meaningful information from sensor input.
Often the sensors of mobile consumer devices (such as ac-
celerometer, humidity, light, battery, temperature, location)
suffer from a poor quality. Distributed sensor fusion can be
applied to improve the statistical significance of such sensor
signals by collecting sensor data in a region of interest from
multiple devices. Fusion can profit from Machine Learning
(ML), which usually bases on classification algorithms de-
rived from supervised machine learning or pattern recogni-
tion using, e.g., self-organizing [14] and distributed multi-
agent systems with less or no a-priori knowledge of the en-
vironment.

This work introduces distributed crowd sensing with sen-
sor and information fusion using mobile agents, enabling

the design of large-scale sensing systems using virtual sen-
sors and the Nervousnet providing the organizational struc-
ture.

The next sections introduce the conceptual fusion of vir-
tual sensors and agents, the JAM platform, and JAM agents.
The agent platform and approach is evaluated with a case
study demonstrating self-organizing sensor fusion, and fur-
ther applications are discussed. The case-study relies on
mobile phone data sampled the 2014 Chaos Communication
Congress in Hamburg, used to investigate temporal network
events in [9].

II.VIRTUAL SENSORS AND AGENTS

In [8], a large-scale sensing application is composed of
virtual sensors. A virtual sensor is a software component
being the core cell of the Nervousnet platform. Each soft-
ware component is treated as a sensor, processing an input
stream and computing an output stream. Each physical sen-
sor is a "data stream" transformer, too, but based on physi-
cal principles. A virtual sensor is a processing system as
well as a data storage (data base).

In this work, virtual sensors are represented by mobile
agents, performing the sensing, aggregation, and application
(or delivery) of accumulated and processed sensor data. As
discussed in the next section, these agents are highly porta-
ble and can be executed by a wide range of devices includ-
ing smart phones. The mobility enables self-organizing and
adaptive mining systems controlled by environmental con-
straints rather than by individual users. In [9], users using a
smart phone App. are considered as agents. This role is re-
placed in this work by the deployment of agents that per-
form tasks autonomously.

The agents interact with each other by accessing tuple
spaces or by exchanging signals. The advantage of tuple
spaces and mobile agents is the generative nature. A sensor
data tuple can be stored in an environment without physical
sensors by mobile agents, enabling the access of remote
sensor data by other agents.

In the original Nervousnet platform, mobile Apps. deliver
sensor data to the Nervousnet data bases, and access control
is performed by the Nervousnet platform. The autonomy of
agents and the anonymous nature of tuples introduce priva-
cy issues, which require dedicated privacy control mecha-
nisms. Although data encryption can be used to protect sen-
sor data, a privacy protection layer applied to sensor data
without encryption stripping private device and user data
can be considered as a more powerful and useful technique.
One private information still exists: The location of agents
and the sensor data they collect from devices, which can be
easily recognized by mobile agents applying path tracing
and other relative localization methods. Therefore agents
require encrypted keys to access personal and sensitive sen-
sor data on mobile devices, granted by the user or trusted
platform.

III.THE JAM PLATFORM AND SECURITY

The deployment of mobile agents in strong heterogene-
ous environments require a scalable agent processing plat-
form, which fit low-resource host platforms (smart phones,
sensor nodes, beacons) as well as high-performance host
platforms such as Cloud data centers. Furthermore, the mi-
gration of agents between different host platforms must be
seamless (portability) and should require as low as possible
resources. JavaScript (JS) programs are highly portable and
are executed on a wide range of platforms without recompi-
lation or modification.

JAM is the JavaScript Agent Machine, implemented en-
tirely in JS. JAM executes reactive agents based on the Ac-
tivity-Transition-Graph behaviour model (ATG), pro-
grammed in AgentJS. JAM can be executed on any JS Virtu-
al Machine (VM), e.g., node.js, spidermonkey with WEB
browsers, and the new low-resource machine JVM (based on
jerryscript and Iot.js). JVM can be used on any host plat-
form, including Android and iOS mobile devices or micro
controller-based beacons. The architecture and agent pro-
gramming is discussed in detail in [15] and [16]. To summa-
rize, JAM agents are programmed in JavaScript (AgentJS)
and are executed in a sand-boxed environment isolating
agents from each other and the computer system by the JAM
Agent Input/Output System (AIOS) with a specific set of
operations. The agent behaviour is composed of activities
with conditional or unconditional activity transitions based
on agent data (forming the ATG). Upon migration of agents
between APPs, an agent process snapshot is created (JSON+
text format) that carries the agent state (code, private data,
and control state) and the agent behaviour (ATG). The snap-
shot can be directly transferred via any kind of communica-
tion channel between nodes and networks, e.g., Bluetooth
links, Internet connections.

JAM is capable of handling thousands of agents per node.
JAM supports virtualization and resource management. De-
pending on the used JS VM, agent processes can be execut-
ed with nearly native code speed. JAM can be embedded in
any host application by using the library version JAMLIB
(400kB code size).

For security reasons and to limit Denial-of-Service at-
tacks, agent masquerading, spying, or other misuse, agents
have different access levels (roles). There are four levels:

1. Guest (not trusting, semi-mobile)
2. Normal (maybe trusting, mobile)
3. Privileged (trusting, mobile)
4. System (trusting, locally, non-mobile)

The lowest level (1) does not allow agent replication, mi-
gration, or the creation of new agents. The JAM platform
decides the security level. The highest level (4) has an ex-
tended AIOS operation set with host platform device access
capabilities. Agents can negotiate resources (e.g., CPU time)
and a level raise secured with a capability-key that defines
the allowed upgrades. The system level can not be negotiat-

ed. The capability is node specific. A group of nodes can
share a common key (identified by a server port). A capabil-
ity consists of a server port, a rights field, and an encrypted
protection field generated with a random port known by the
sever (node) only and the rights field.

Among the AIOS level, other constrain parameters can be
negotiated:
• Scheduling time (maximal slice time for one activity

execution, default is 20ms)
• Run time (accumulated agent execution time, def. is 2s)
• Living time (overall time an agent can exist on a node

before it is killed, default is 200s)
• Tuple space access limits
• Memory limits (practically fuzzy, usually the entire size

of the agent code including private data, actually not lim-
ited)

The processing performance of JAM depends on the host
platform (computer, server, smart phone, embedded system)
and the used JS engine (node.js/V8, jxcore/ V8/ Spidermon-
key, JVM). JVM is a bytecode interpreter compiling JS text
code to bytecode at run-time, and V8-based machines are
hybrid interpreters with just-in-time (JIT) native code gen-
eration. Bytecode engines compared with native code en-
gines have the advantage of a high degree of portability, but
the disadvantage of slower execution speed (~100 times).
Native code engines have much higher memory consump-
tion, shown in the experimental evaluation and comparison
in Tab. I.

JS VM/Benchmark Host C1 Host M1 Host M2 Host E1

JVM, A1, N4, n100
Creation/Migration

1.6/9.7ms
3/4MB

4.8/21.6ms
2/3MB

8.4/49ms
2/3MB

-

ND1, A1, N4, n100
Creation/Migration

0.2/1.1ms
27/36MB

- - -

ND2, A1, N4, n100
Creation/Migration

0.13/1ms
21/32MB

- - 2.2/15ms
15/27MB

JVM, F1, D2000, n10
Computation,

1300ms
6MB

3000ms
5MB

4200ms
5MB

ND1, F1, D2000, n10
Computation

400ms
45MB

- - -

ND2, F1, D2000, n10
Computation

550ms
35MB

- - 300ms
40MB

TABLE I. All times per agent and action, all memory values are total
JAM resident memory after the benchmark operation, A1: Simple Ex-
plorer Agent, F1: FFT Computation Agent, C1: Hewlett-Packard HP
xw9400 Workstation, AMD Opteron 2216 2.4GHz x64, M1: Lenovo,
ideapad, M1: Smartphone, Toughshield R500+, E1: Raspberry Pi Zero,
Broadcom 1GHz ARM11, ND1:node.js v5.11, ND2: node.js v0.10, n:
Number of agents, N: Number of logical nodes, D: Size of data vector

In all benchmark experiments in Tab. I the JAMLIB
code library was used. The creation and migration of
agents require text-to-code and code-to-text transfor-
mations that are computational expensive (see A1 bench-
mark). Though the computation speed of JVM is about 100
times slower compared with V8 engines, the agent activity
computation performance is only 3-4 times slower (see
FFT benchmark F1). This is a result of a watchdog timer
built in the JVM byte code interpreter required by JAM for
agent scheduling and time slicing. The watchdog raises an
exception if an agent activity exceeds the (negotiated) time
slice. In V8 engines this watchdog approach cannot be
implemented (due to the native code compilation), and
must be emulated by check pointing, which injects check-
point function calls in the agent code (in all functions and
loops), slowing down the agent activity execution signifi-
cantly.

IV.THE MULTI-AGENT SYSTEM FOR FLOW MONITORING

The goal of the MAS is the self-organized collection and
fusion of mobile device sensor data. Though mobile devices
can connect to the Internet, it is assumed that mobile devices
interact with beacons deployed in the environment. These
beacons provide a low range locally limited connectivity,
e.g., based on Bluetooth technology. Beacons can be op-
tionally connected to the Internet to interact with the Nerv-
ousnet data base or other beacons, but this is not a prerequi-
site. The beacons are part of Nervousnet and represent vir-
tual sensors. Hence, a beacon can be anything or technical
device that is part of the IoT. Moreover, mobile agents
should be used to exchange information between beacons
and the data base, creating virtual paths. One major task in
crowd sensing and social mining is the estimation and pre-
diction of people flows in public environments, e.g., for
building automation (controlling temperature, light, air con-
dition) and emergency management. Furthermore, such flow
monitoring can be used for the evaluation of advertisement
placement in public environments or traffic control.

Acceleration sensor data from mobile devices can be
used to classify different crowd situations, i.e., low, middle,
and high individual movement within a ROI, defining some
kind of crowd agitation (comparable to an entropy). But
acceleration data is very unreliable and spatially relative.
The three-dimensional orientation of smart phones is usual-
ly unknown if compass/tilt sensor data is missing. But sen-
sor fusion of ensemble data from multiple devices in the
same region can be used to derive information of crowd
movement patterns within a ROI.

The MAS is composed of different agents having differ-
ent goals and performing different behaviours:
Beacon Node Agent

The beacon node agent is non-mobile and responsible for
the connection management, collection, and processing of
sensor data delivered by mobile explorer agents sent from
mobile devices. The agent performs sensor fusion and

event detection using an exponential fusion filter, dis-
cussed in Sec. V.

Mobile Device Node Agent
The mobile device node agent is non-mobile and respon-
sible for the sensor data acquisition and event detection on
the mobile device. If sensor events are recognized it sends
out explorer agents distributing the sensor data to beacons
in the neighbourhood.

Explorer Agent
The mobile explorer agent is used to distribute mobile de-
vice sensor data to beacons and to get information from
beacons in the neighbourhood of the mobile device.

Deliver Agent
Accumulated sensor data collected by beacons (including
beacon identification and GPS position) can be distributed
to other beacons by using mobile deliver agents and mo-
bile devices as a carrier host. The deliver agent only ex-
changes data on beacons by using the tuple space data
base on each node. To avoid flooding of data bases, mark-
ings with a limited time life are used instead of persistent
tuples. The mobile device is a transportation unit only. If
new beacons are detected by the deliver agent, it replicates
itself and the replicates migrate to the new beacons to de-
liver the sensor data. After delivery, the replicated agents
terminate (see Fig. 2).
To avoid deliver agent flooding, a beacon only sent one
deliver agent to a mobile device and the deliver agent has
a limited lifetime.

Notification Agent
The notification agent is sent to mobile devices or other
beacons to notify about important events. Notification
agents are broadcast messenger, with a similar behaviour
of the deliver agent, including replication.

The principle network topology and the deployment of
agents are shown in Fig. 2. It is assumed that mobile devices
can communicate with beacons only (and vice versa).

The position of a mobile device given in geographic co-
ordinates by the vector O=(latitude,longitude) can be either
measured by a GPS receiver or can be estimated by using a
weighted position triangulation with a set of detected bea-
cons delivering their GPS-based position Oi using short
range communication (e.g., Bluetooth):

(1)

with rssi as the received signal strength indicator (-dB units)
used as the weight and a measure for the distance between
the mobile device and the beacon. and N a normalization
function mapping rssi levels on linear distance units, e.g.,
N(r)=(r0+r). Usually users of smart phones do not allow
GPS position tracking, and beacon triangulation can be a
valuable solution to get the position of mobile devices.

Figure 2. Principle network topology with spatially distributed beacons
(non-mobile) and mobile devices, the MAS and the agent-node interac-
tions.

Agents exchange information/sensor data via the node
tuple space without knowing each other, avoiding agent
identification. Data from one node A (read from the node A
tuple space) can be transported to another node B (written to
the node B tuple space) by agents carried on mobile devices.

The data collected by explorer and deliver agents can be
used for distributed learning delivering a prediction of
crowd situations. Distributed agents-based on-line learning
was discussed in [16], and is not addressed in this work, but
can easily be added with mobile learner agents. These learn-
er agents can hop between different mobile devices staying
within a Region-of-Interest (ROI).

V.USE-CASE: DISTRIBUTED FLOW MONITORING IN A
BUILDING

The use-case should demonstrate the MAS deployment in
mobile networks performing distributed and self-organizing
sensor fusion and flow monitoring. Sensors of smart phones
usually delivering sensor data with low accuracy. If there
are many devices within ROI, multiple sensors can be used
to compute a more accurate ensemble value. Examples are
ambient light, temperature, radio signal strength, humidity,
acceleration, or sound level. In Crowd monitoring, the posi-
tion and the acceleration sensors can be used as an input.

The MAS consists of different non-mobile and mobile
agents, discussed in Sec. IV. The goal of the MAS is crowd
monitoring, delivering a time-resolved spatial matrix of
three parameters: 1. Population (number of mobile devices
in a ROI), 2. Agitation (weighted and accumulated move-
ment profile of the users in a small region), and 3. Flow
(paths from other ROI and beacons).

The simulation uses collected smart phone data from the
conference event (Chaos Communication Congress, Ham-
burg, 27.12. - 30.12.14, [9]). The simulation world consists
of a map of the three floors of the conference building, de-
ployed with multiple non-mobile beacons (triangles), shown
in Fig. 3. The beacons are positioned by their measured GPS

position. The mobile devices are positioned either by a
submitted GPS positions (not available in this experiment)
or/and by a weighted position triangulation of detected bea-
cons (radio signal strength is used as the weight, Eq. 1.).

The GPS position of smart phones usually have a poor
spatial accuracy, and beacon triangulation can deliver more
accurate results.

Figure 3. SEJAM2: JAM Simulation Environment with the world consist-
ing of three floors of a building. Shown are beacons (yellow triangles, each
populated with a node agent) and some mobile devices (green rectangles).
The black circles represent Bluetooth links of the devices, indicating the
communication range.

The SEJAM simulator was connected to multiple SQL3

data base servers, storing the sensor and monitoring data.
Experimental simulation results are shown in Fig. 4. The

agent population of the entire conference network depends
on smart phone mobility (moving velocity) and the crowd
flow in the beacon areas. The event-based approach for the
creation of explorer and deliver agents results in an overall
low agent density with periods of low activity, reducing
communication and computation significantly.

The population of explorer and deliver agents correlates
significantly with three relevant different events happening
during the observation time, analyzed in the following dis-
cussion.

The MAS performs the estimation of different crowd sit-
uations parameters, enabling the distinction of different
crowd behaviour situations. These computed parameters can
be considered as virtual sensors of the Nervousnet system.

Figure 4. Agent population in the conference network during the first 5000
simulation steps (start time 1419700000s, end time 1419711914s UTC).
Total created agents: Mobile: 29, Explorer: 10590, Deliver: 880).

The three relevant virtual sensors <P,A,F> implementing

sensor fusion are computed by Eq.2., the population meas-
ure P, based on the actual and past connectivity detection of
mobile devices (connection c), the acceleration sensor data
delivered by explorer agents (a, the mean value of x-/y-/z-
direction values) computing the crowd agitation measure A
in a ROI (i.e., a measure for the small range movement of
the crowd in the ROI, e.g., a room), and the flow counter
delivered by the deliver agents (f) used for the computation
of the flow F. Exponential filtering (with d as a decay con-
stant) is applied to the agitation and flow sensors, and the
population and agitation sensors use time weighted sensor
values (t is the current time, t(s) the sensor acquisition time,
and k a weight factor). Nc is the number of connected nodes,
and Ns is the number of all aggregated sensors.

(2)

The time-resolved crowd population, crowd agitation,

and crowd flow monitoring results of all beacons in the
network are shown in Fig. 5. Specific situations, i.e. crowd
movement or crowd forming can be localized and detected
based on the locally computed and distributed virtual sensor
data delivered by the beacon agents. In the simulation there
are three characteristic situations within the time window

shown in Fig. 5 (Events 1,2,3). Event 1 shows a crowd for-
mation with moderate population but increased agitation,
and sporadic flow diffusion. Event 2 shows a crowd for-
mation with an increased population but low agitation and
diffusion. And finally, event 3 shows high population and
agitation with increased diffusion behaviour of the crowd.

VI.CONCLUSIONS AND OUTLOOK

The use-case showed the suitability of the distributed de-
ployment of MAS in the context of the Planetary Nervous
system used for crowd sensing. In contrast to many existing
crowd sensing solutions, the MAS approach with local sen-
sor aggregation and processing will provide an enhanced
scaling in large-scale scenarios. The original Nervousnet is
closely related to the Cloud paradigm with server-client
communication. The MAS can be used to pre-process and
reduce the raw sensor data of smart phones in a local ROI,
finally distributed across the ROI by agents carried on mo-
bile devices. Large-scale distributed applications require an
organisational structure layer, which addresses scalability,
adaptability, self-organization, robustness, and resource
constraints, basically composed of agents implementing
virtual sensors together with the Nervousnet organization.
Three relevant virtual sensor parameters were computed by
beacon agents: Crowd population, agitation, and flow, get-
ting sensor input from explorer and deliver agents, carried
by mobile devices. The agents are represented by mobile
JavaScript code (AgentJS) that is managed and processed by
a modular and portable agent platform JAM in a protected
sandbox environment encapsulating agent processes. JAM is
implemented entirely in JS, and can be executed on any
mobile device.

The virtual sensors are basic cells composing an organi-
sational structure, the Planetary Nervous system, providing
the high-level platform for social mining. The presented
approach enables the development of perceptive clouds and
smart environments of the future integrated in daily use
computing environments and the Internet. Specific situa-
tions, i.e. crowd movement or crowd forming can be local-
ized and detected based on monitoring data of a simple bea-
con network. The design and platform approach is suitable
to cover the sensing, aggregation, and application layers of
large-scale and massively distributed information processing
systems efficiently, consisting of heterogeneous devices.
The use-case that bases on real sampled sensor data of smart
phones collected by Nervousnet showed the suitability of
the MAS for efficient event-based Crowd sensing. The
MAS composed of agents with different goals and behav-
iour is able to recognize different crowd situations with dif-
ferent population, agitation, and diffusion (flow) character-
istics just by using the three computed virtual sensor values.
The low-resource JS machine JVM enables the deployment
of JAM on IoT devices and smart phones.

Figure 5. (Top) Crowd Population, (Middle) Crowd Agitation, and (Bot-
tom) Crowd Flow (diffusion) monitoring from the beacon agents in the
conference network [Y axis: plot stacking of sensors of individual beacon
agents, bottom line: beacon 11, top line: beacon 120]

References
[1] M. Caridi and A. Sianesi, Multi-agent systems in production

planning and control: An application to the scheduling of
mixed-model assembly lines, Int. J. Production Economics, vol.
68, pp. 29–42, 2000.

[2] P. Leitão and S. Karnouskos, Industrial Agents Emerging Ap-
plications of Software Agents in Industry. Elsevier, 2015.

[3] S. Bosse, A. Lechleiter, Structural Health and Load Monitor-
ing with Material-embedded Sensor Networks and Self-
organizing Multi-agent Systems, Procedia Technology, 2014,
DOI: 10.1016/j.protcy.2014.09.039

[4] D. Lehmhus, T. Wuest, S. Wellsandt, S. Bosse, T. Kaihara, K.-
D. Thoben, and M. Busse, Cloud-Based Automated Design and
Additive Manufacturing: A Usage Data-Enabled Paradigm
Shift, Sensors MDPI, vol. 15, no. 12, pp. 32079–32122, 2015,
DOI 10.3390/s151229905.

[5] T. Leppänen, J. Á. Lacasia, Y. Tobe, K. Sezaki, and J. Riekki,
“Mobile crowdsensing with mobile agents,” Autonomous
Agents and Multi-Agent Systems, vol. 31, no. 1, 2017.

[6] M. Guijarro, R. Fuentes-fernández, G. Pajares, A Multi-Agent
System Architecture for Sensor Networks, Multi-Agent Sys-
tems - Modeling, Control, Prog., Simulations and Applications,
2008.

[7] G. Cardone et al., “Fostering ParticipAction in Smart Cities: A
Geo-Social Crowdsensing Platform,” IEEE Communications
Magazine, no. 6, 2013.

[8] E. Pournaras, I. Moise, and D. Helbing, Privacy-preserving
Ubiquitous Social Mining via Modular and Compositional Vir-
tual Sensors, in IEEE 29th International Conference on Ad-
vanced Information Networking and Applications, 2015.

[9] F. Musciotto, S. Delpriori, P. Castagno, and E. Pournaras, Min-
ing Social Interactions in Privacy-preserving Temporal Net-
works, in Advances in Social Networks Analysis and Mining
(ASONAM), 2016 IEEE/ACM, 2016.

[10] Q. Kong, R. M. Allen, L. Schreier, and Y.-W. Kwon, “My-
Shake: A smartphone seismic network for earthquake early
warning and beyond,” Sci. Adv., vol. 2, 2016.

[11] R. Milner, The space and motion of communicating agents.
Cambridge University Press, 2009.

[12] L. Chunlina, L. Zhengdinga, L. Layuanb, and Z. Shuzhia, A
mobile agent platform based on tuple space coordination, Ad-
vances in Engineering Software, vol. 33, no. 4, pp. 215–225,
2002

[13] Z. Qin, J. Xing, and J. Zhang, A Replication-Based Distribu-
tion Approach for Tuple Space-Based Collaboration of Heter-
ogeneous Agents, Research Journal of Information Technolo-
gy, vol. 2, no. 4. pp. 201–214, 2010

[14] V. Di Lecce, M. Calabrese, and C. Martines, From Sensors to
Applications: A Proposal to Fill the Gap, Sensors & Trans-
ducers, vol. 18, no. Special Isse, pp. 5–13, 2013.

[15] S. Bosse, Mobile Multi-Agent Systems for the Internet-of-
Things and Clouds using the JavaScript Agent Machine Plat-
form and Machine Learning as a Service, in The IEEE 4th In-
ternational Conference on Future Internet of Things and Cloud,
22-24 August 2016, Vienna, Austria, 2016.

[16] S. Bosse, Distributed Machine Learning with Self-organizing
Mobile Agents for Earthquake Monitoring, in 2016 IEEE 1st
International Workshops on Foundations and Applications of
Self* Systems (FAS*W) , SASO Conference, DSS, 12 Sep-
tember 2016, Augsburg, Germany, 2016.

