
An Ubiquitous Multi-Agent Mobile Platform for Distributed Crowd Sensing and 
Social Mining 

 
Stefan Bosse 

University of Bremen, Department of Mathematics & 
Computer Science 
Bremen, Germany 

sbosse@uni-bremen.de 

Evangelos Pournaras 
Professorship of Computational Social Science 

 ETH Zürich 
Zürich, Switzerland 
epournaras@ethz.ch

 
 

Abstract—Smart mobile devices are fundamental date sources 
for crowd activity tracing. Large-scale mobile networks and 
the Internet-of-Things (IoT) expand and become part of perva-
sive and ubiquitous computing offering distributed and trans-
parent services. With the IoT, Crowd Sensing is extended by 
Things Sensing, creating heterogeneous smart environments. A 
unified and common data processing and communication 
methodology is required so that the IoT, mobile networks, and 
Cloud-based environments seamlessly integrate, which can be 
fulfilled by self-organizing mobile agents, discussed in this 
work. Currently, portability, resource constraints, security, 
and scalability of Agent Processing Platforms (APP) are essen-
tial issues for the deployment of Multi-agent Systems (MAS) in 
highly heterogeneous networks. Beside the operational aspects 
of MAS, an organizational structure is required for the de-
ployment of MAS in crowd sensing and social mining applica-
tions. The Planetary Nervous system (Nervousnet) consists of 
virtual sensors building the core functionality for such applica-
tions running on smart phones with a Cloud-like architecture. 
The virtual sensors enable a holistic composition and model-
ling approach. Self-organizing and adaptive mobile agents are 
well known as the core cells of holistic and modular systems. In 
this work, both concepts are combined. JavaScript agents are 
introduced as virtual sensors in the Nervousnet environment, 
evaluated with a simulation of a distributed sensor fusion use-
case in a mobile network based on real-world data from Nerv-
ousnet, showing the suitability of the hybrid approach, benefit-
ing from local and event-based sensor processing performed by 
the MAS. 

Keywords- Crowd Sensing, Pervasive Computing, Ubiquitous 
Computing, Agents, Self-organizing systems 

I.INTRODUCTION  

Mobile networks, wearable devices, and the Internet-of-
Things get more and more pervasive in today’s digital socie-
ty. Millions of devices can contribute to pervasive and ubiq-
uitous computing, forming one big machine, which offers 
distributed and transparent services. These networks are 
highly dynamic with loosely coupled ad-hoc connectivity 
(temporal networks) and inter-communication, producing a 
large amount of data, often with a low degree of data corre-
lation. Classical distributed systems can deal with a large 
amount of data, but do not meet the requirements for these 
dynamic and loosely coupled environments. Agents and 
distributed agent-based systems are already deployed suc-
cessfully in heterogeneous large-scale environments, e.g., 

production and manufacturing processes [1], or the control 
of manufacturing processes [2], facing manufacturing, 
maintenance, evolvable assembly systems, quality control, 
and energy management aspects, and in sensing applica-
tions, e.g., monitoring of mechanical structures and devices 
[3]. Finally the paradigm of industrial agents meeting the 
requirements of modern industrial applications by integrat-
ing sensor networks was introduced [4].  

Newer trends show the suitability of Multi-agent Systems 
(MAS) in crowd sensing applications, e.g., [5], implement-
ing different roles of crowd sensing campaigns with agents. 
The agents control sensing, collect and distribute data. But 
the agents and the software framework (Agent processing 
Platform, APP) rely on Internet services, not always availa-
ble, limiting the use space. A light weighted approach and 
APP is required for a wide-area deployment, enhanced by a 
distributed adaptive organizational structure.  

In large-scale dynamic networks an organizational struc-
ture is required for interaction and communication. In [6] 
sensors are considered as devices used by an upper layer of 
controller agents. Agents are organized according to roles 
related to the different aspects to integrate, mainly sensor 
management, communication and data processing. This or-
ganization isolates and decouples the data management from 
changing networks, while encouraging reuse of solutions. 

Most crowd sensing platforms are using cloud- or cen-
tralized data base approaches for the aggregation and pro-
cessing of user and sensor data, e.g., McSense [7] or Nerv-
ousnet [8], based on a client-to-server architecture, though 
supporting distributed pre-processing. 

The Planetary Nervous System (Nervousnet) is an envi-
ronment and platform consisting of sensors that process a 
set of input streams of data generated from physical or vir-
tual sensors. The environment defines the context within 
that the virtual sensor operates to generate its output stream 
[8]. The platform provides ubiquitous social mining as a 
public service. Sensing systems consist of three different 
functional layers: Sensing, Aggregation, and Application. 
All three layers can be represented by virtual sensors and 
agents.  

Data sharing, data collection, and data fusion are main 
building blocks of such a system. In contrast to traditional 
embedded sensor networks, social mining in public net-
works requires privacy rules, as discussed in [9]. 



  

 
Figure 1. Unified MN/IoT/ Cloud Distributed Perception and Information Processing with mobile agents, the JavaScript (JS) Agent Machine Platform 
(JAM) and the Nervousnet Service as the organizational layer composed of virtual sensors, represented in this work with JAM agents. 

Sensing devices, e.g., smart phones, commonly interact 
with a Cloud-like service architecture (device-to-cloud 
communication). 

Crowd sensing has already been successfully applied to 
different purposes. In [10], smart phones were used to com-
pose a seismic network in urban environments for spatially 
fine-grained earthquake monitoring. But as in the current 
Nervousnet approach, the distributed data is evaluated either 
locally or at a central instance. With the emerging IoT, 
Crowd Sensing is extended by Things Sensing. Distributed 
data mining and Map-Reduce algorithms are well suited for 
self-organizing MAS. Cloud-based computing with MAS, 
e.g., as a base for crowd sensing and participatory social 
mining use cases, means the virtualization of resources, i.e., 
storage, processing platforms, sensing data or generic in-
formation. Mobile Agents reflect a mobile service architec-
ture. Commonly, distributed perceptive systems are com-
posed of sensing, aggregation, and application functional 
layers, shown in Fig. 1. 

But IoT, mobile, and Cloud environments differ signifi-
cantly in terms of resources: The IoT and mobile networks 
consist of a large number of low-resource devices interact-
ing with the real world and having strictly limited storage 
capacities and computing power, and the Cloud consists of 
large-scale computers with arbitrary and extensible compu-
ting power and storage capacities in a basically virtual 
world. A unified and common data processing and commu-
nication methodology is required to merge the IoT with 

Cloud environments seamlessly, fulfilled by the mobile 
agent-based computing paradigm, addressed in this work. 

The scalability of complex ubiquitous applications using 
such large-scale cloud-based and wide area distributed net-
works deals with systems deploying thousands up to million 
agents. But the majority of current laboratory prototypes of 
MAS deal with less than 1000 agents [2]. In the past, many 
traditional processing platforms could not handle a big 
number of agents with the robustness and efficiency re-
quired by the industry [2] and Cloud applications. In the 
past decade the capabilities and the scalability of agent-
based systems have increased substantially, especially ad-
dressing efficient processing of mobile agents. The integra-
tion of perceptive and mobile devices in the Internet raises 
communication and operational barriers, which must be 
overcome by a unified agent processing architecture and 
framework, discussed in this work. 

In this work the behaviour of mobile agents are modeled 
with dynamic Activity-Transition Graphs (ATG), which are 
directly implemented in JavaScript (JS) program code hold-
ing the entire control and data state of an agent (Fig. 1, right 
side). The used agent model bases on the mobile processes 
model introduced by Milner [11]. The code can be modified 
by the agent itself using code morphing techniques required 
for behaviour adaptation (directly supported by JavaScript 
Just-in-time and Bytecode Compiler VM platforms). The 
code is capable of migration in the network between nodes 
required for distributed data processing. This approach re-
quires only a minimal Agent Processing Platform Service 



(APPS). The AgentJS code can be directly executed by the 
underlying JS VM (e.g., node.js, jxcore, JVM, webview for 
mobile App. development, or spidermonkey used in brows-
ers). 

Agents operating on a particular node can interact and 
synchronize by using a tuple-space, which were proposed in 
[12] and [13] as a suitable MAS interaction and co-
ordination paradigm. This approach provides a high degree 
of computational independency from the underlying plat-
form and other agents, and enhanced robustness of the entire 
heterogeneous environment in the presence of node, sensor, 
link, data processing, and communication failures.  

A sensor network as part of the IoT is composed of nodes 
capable of sensor processing and communication. Modern 
mobile phones (smart phones) are equipped with multiple 
sensors. Hence a mobile network consisting of smart phones 
can be considered a sensor network, too. Smart systems and 
environments are composed of more complex networks (and 
networks of networks) differing significantly in computa-
tional power and available resources, rising inter-
communication barriers. They provide higher level infor-
mation processing that maps the raw sensor data to con-
densed information. They can provide, e.g., Internet connec-
tivity of perceptive systems (body area networks...). These 
smart systems unite sensing, aggregation, and application 
layers [14], offering a more unified design approach and 
more generic and unified architectures. Smart systems glue 
software and hardware components to an extended opera-
tional unit, the basic cell of the IoT. 

The central approach in this work focuses on mobile 
agents and the ability to support mobile reconfigurable code 
embedding the agent behaviour, the agent data, the agent 
configuration, and the current agent control state, finally 
encapsulated in portable JavaScript code. The mobility is 
granted by converting the agent program in a textual JSON+ 
representation, and finally by parsing this text and executing 
the code again. This agent-specific mobile program code 
can be executed on a variety of different host platforms in-
cluding mobile devices, embedded devices, sensor nodes, 
and servers, using JAM and a JS VM, bridging the gap be-
tween the IoT and Cloud infrastructures. 

One of the major challenges in sensing systems is the 
derivation of meaningful information from sensor input. 
Often the sensors of mobile consumer devices (such as ac-
celerometer, humidity, light, battery, temperature, location) 
suffer from a poor quality. Distributed sensor fusion can be 
applied to improve the statistical significance of such sensor 
signals by collecting sensor data in a region of interest from 
multiple devices. Fusion can profit from Machine Learning 
(ML), which usually bases on classification algorithms de-
rived from supervised machine learning or pattern recogni-
tion using, e.g., self-organizing [14] and distributed multi-
agent systems with less or no a-priori knowledge of the en-
vironment.  

This work introduces distributed crowd sensing with sen-
sor and information fusion using mobile agents, enabling 

the design of large-scale sensing systems using virtual sen-
sors and the Nervousnet providing the organizational struc-
ture. 

The next sections introduce the conceptual fusion of vir-
tual sensors and agents, the JAM platform, and JAM agents. 
The agent platform and approach is evaluated with a case 
study demonstrating self-organizing sensor fusion, and fur-
ther applications are discussed. The case-study relies on 
mobile phone data sampled the 2014 Chaos Communication 
Congress in Hamburg, used to investigate temporal network 
events in [9].  

II.VIRTUAL SENSORS AND AGENTS 

In [8], a large-scale sensing application is composed of 
virtual sensors. A virtual sensor is a software component 
being the core cell of the Nervousnet platform. Each soft-
ware component is treated as a sensor, processing an input 
stream and computing an output stream. Each physical sen-
sor is a "data stream" transformer, too, but based on physi-
cal principles. A virtual sensor is a processing system as 
well as a data storage (data base). 

In this work, virtual sensors are represented by mobile 
agents, performing the sensing, aggregation, and application 
(or delivery) of accumulated and processed sensor data. As 
discussed in the next section, these agents are highly porta-
ble and can be executed by a wide range of devices includ-
ing smart phones. The mobility enables self-organizing and 
adaptive mining systems controlled by environmental con-
straints rather than by individual users. In [9], users using a 
smart phone App. are considered as agents. This role is re-
placed in this work by the deployment of agents that per-
form tasks autonomously.  

The agents interact with each other by accessing tuple 
spaces or by exchanging signals. The advantage of tuple 
spaces and mobile agents is the generative nature. A sensor 
data tuple can be stored in an environment without physical 
sensors by mobile agents, enabling the access of remote 
sensor data by other agents. 

In the original Nervousnet platform, mobile Apps. deliver 
sensor data to the Nervousnet data bases, and access control 
is performed by the Nervousnet platform. The autonomy of 
agents and the anonymous nature of tuples introduce priva-
cy issues, which require dedicated privacy control mecha-
nisms. Although data encryption can be used to protect sen-
sor data, a privacy protection layer applied to sensor data 
without encryption stripping private device and user data 
can be considered as a more powerful and useful technique. 
One private information still exists: The location of agents 
and the sensor data they collect from devices, which can be 
easily recognized by mobile agents applying path tracing 
and other relative localization methods. Therefore agents 
require encrypted keys to access personal and sensitive sen-
sor data on mobile devices, granted by the user or trusted 
platform. 



III.THE JAM PLATFORM AND SECURITY 

The deployment of mobile agents in strong heterogene-
ous environments require a scalable agent processing plat-
form, which fit low-resource host platforms (smart phones, 
sensor nodes, beacons) as well as high-performance host 
platforms such as Cloud data centers. Furthermore, the mi-
gration of agents between different host platforms must be 
seamless (portability) and should require as low as possible 
resources. JavaScript (JS) programs are highly portable and 
are executed on a wide range of platforms without recompi-
lation or modification. 

JAM is the JavaScript Agent Machine, implemented en-
tirely in JS. JAM executes reactive agents based on the Ac-
tivity-Transition-Graph behaviour model (ATG), pro-
grammed in AgentJS. JAM can be executed on any JS Virtu-
al Machine (VM), e.g., node.js, spidermonkey with WEB 
browsers, and the new low-resource machine JVM (based on 
jerryscript and Iot.js). JVM can be used on any host plat-
form, including Android and iOS mobile devices or micro 
controller-based beacons. The architecture and agent pro-
gramming is discussed in detail in [15] and [16]. To summa-
rize, JAM agents are programmed in JavaScript (AgentJS) 
and are executed in a sand-boxed environment isolating 
agents from each other and the computer system by the JAM 
Agent Input/Output System (AIOS) with a specific set of 
operations. The agent behaviour is composed of activities 
with conditional or unconditional activity transitions based 
on agent data (forming the ATG). Upon migration of agents 
between APPs, an agent process snapshot is created (JSON+ 
text format) that carries the agent state (code, private data, 
and control state) and the agent behaviour (ATG). The snap-
shot can be directly transferred via any kind of communica-
tion channel between nodes and networks, e.g., Bluetooth 
links, Internet connections.  

JAM is capable of handling thousands of agents per node. 
JAM supports virtualization and resource management. De-
pending on the used JS VM, agent processes can be execut-
ed with nearly native code speed. JAM can be embedded in 
any host application by using the library version JAMLIB 
(400kB code size). 

For security reasons and to limit Denial-of-Service at-
tacks, agent masquerading, spying, or other misuse, agents 
have different access levels (roles). There are four levels: 

1. Guest (not trusting, semi-mobile) 
2. Normal (maybe trusting, mobile) 
3. Privileged (trusting, mobile) 
4. System (trusting, locally, non-mobile) 

The lowest level (1) does not allow agent replication, mi-
gration, or the creation of new agents. The JAM platform 
decides the security level. The highest level (4) has an ex-
tended AIOS operation set with host platform device access 
capabilities. Agents can negotiate resources (e.g., CPU time) 
and a level raise secured with a capability-key that defines 
the allowed upgrades. The system level can not be negotiat-

ed. The capability is node specific. A group of nodes can 
share a common key (identified by a server port). A capabil-
ity consists of a server port, a rights field, and an encrypted 
protection field generated with a random port known by the 
sever (node) only and the rights field. 

Among the AIOS level, other constrain parameters can be 
negotiated: 
• Scheduling time (maximal slice time for one activity 

execution, default is 20ms) 
• Run time (accumulated agent execution time, def.  is 2s) 
• Living time (overall time an agent can exist on a node 

before it is killed, default is 200s) 
• Tuple space access limits 
• Memory limits (practically fuzzy, usually the entire size 

of the agent code including private data, actually not lim-
ited) 

The processing performance of JAM depends on the host 
platform (computer, server, smart phone, embedded system) 
and the used JS engine (node.js/V8, jxcore/ V8/ Spidermon-
key, JVM). JVM is a bytecode interpreter compiling JS text 
code to bytecode at run-time, and V8-based machines are 
hybrid interpreters with just-in-time (JIT) native code gen-
eration. Bytecode engines compared with native code en-
gines have the advantage of a high degree of portability, but 
the disadvantage of slower execution speed (~100 times). 
Native code engines have much higher memory consump-
tion, shown in the experimental evaluation and comparison 
in Tab. I.  

 

JS VM/Benchmark Host C1 Host M1 Host M2 Host E1 

JVM, A1, N4, n100 
Creation/Migration  

1.6/9.7ms 
3/4MB 

4.8/21.6ms 
2/3MB 

8.4/49ms 
2/3MB 

- 

ND1, A1, N4, n100 
Creation/Migration 

0.2/1.1ms 
27/36MB 

- - - 

ND2, A1, N4, n100 
Creation/Migration  

0.13/1ms 
21/32MB 

- - 2.2/15ms 
15/27MB 

JVM, F1, D2000, n10 
Computation,  

1300ms 
6MB 

3000ms 
5MB 

4200ms 
5MB 

 

ND1, F1, D2000, n10 
Computation  

400ms 
45MB 

- - - 

ND2, F1, D2000, n10 
Computation  

550ms 
35MB 

- - 300ms 
40MB 

 

TABLE I.  All times per agent and action, all memory values are total 
JAM resident memory after the benchmark operation, A1: Simple Ex-
plorer Agent, F1: FFT Computation Agent, C1: Hewlett-Packard HP 
xw9400 Workstation, AMD Opteron 2216 2.4GHz x64, M1: Lenovo, 
ideapad, M1: Smartphone, Toughshield R500+, E1: Raspberry Pi Zero, 
Broadcom 1GHz ARM11,  ND1:node.js v5.11, ND2: node.js v0.10,  n: 
Number of agents, N: Number of logical nodes, D: Size of data vector 



In all benchmark experiments in Tab. I the JAMLIB 
code library was used. The creation and migration of 
agents require text-to-code and code-to-text transfor-
mations that are computational expensive (see A1 bench-
mark). Though the computation speed of JVM is about 100 
times slower compared with V8 engines, the agent activity 
computation performance is only 3-4 times slower (see 
FFT benchmark F1). This is a result of a watchdog timer 
built in the JVM byte code interpreter required by JAM for 
agent scheduling and time slicing. The watchdog raises an 
exception if an agent activity exceeds the (negotiated) time 
slice. In V8 engines this watchdog approach cannot be 
implemented (due to the native code compilation), and 
must be emulated by check pointing, which injects check-
point function calls in the agent code (in all functions and 
loops), slowing down the agent activity execution signifi-
cantly. 

IV.THE MULTI-AGENT SYSTEM FOR FLOW MONITORING 

The goal of the MAS is the self-organized collection and 
fusion of mobile device sensor data. Though mobile devices 
can connect to the Internet, it is assumed that mobile devices 
interact with beacons deployed in the environment. These 
beacons provide a low range locally limited connectivity, 
e.g., based on Bluetooth technology. Beacons can be op-
tionally connected to the Internet to interact with the Nerv-
ousnet data base or other beacons, but this is not a prerequi-
site. The beacons are part of Nervousnet and represent vir-
tual sensors. Hence, a beacon can be anything or technical 
device that is part of the IoT. Moreover, mobile agents 
should be used to exchange information between beacons 
and the data base, creating virtual paths. One major task in 
crowd sensing and social mining is the estimation and pre-
diction of people flows in public environments, e.g., for 
building automation (controlling temperature, light, air con-
dition) and emergency management. Furthermore, such flow 
monitoring can be used for the evaluation of advertisement 
placement in public environments or traffic control.  

Acceleration sensor data from mobile devices can be 
used to classify different crowd situations, i.e., low, middle, 
and high individual movement within a ROI, defining some 
kind of crowd agitation (comparable to an entropy). But 
acceleration data is very unreliable and spatially relative. 
The three-dimensional orientation of smart phones is usual-
ly unknown if compass/tilt sensor data is missing. But sen-
sor fusion of ensemble data from multiple devices in the 
same region can be used to derive information of crowd 
movement patterns within a ROI. 

The MAS is composed of different agents having differ-
ent goals and performing different behaviours: 
Beacon Node Agent 

The beacon node agent is non-mobile and responsible for 
the connection management, collection, and processing of 
sensor data delivered by mobile explorer agents sent from 
mobile devices. The agent performs sensor fusion and 

event detection using an exponential fusion filter, dis-
cussed in Sec. V. 

Mobile Device Node Agent 
The mobile device node agent is non-mobile and respon-
sible for the sensor data acquisition and event detection on 
the mobile device. If sensor events are recognized it sends 
out explorer agents distributing the sensor data to beacons 
in the neighbourhood. 

Explorer Agent 
The mobile explorer agent is used to distribute mobile de-
vice sensor data to beacons and to get information from 
beacons in the neighbourhood of the mobile device. 

Deliver Agent 
Accumulated sensor data collected by beacons (including 
beacon identification and GPS position) can be distributed 
to other beacons by using mobile deliver agents and mo-
bile devices as a carrier host. The deliver agent only ex-
changes data on beacons by using the tuple space data 
base on each node. To avoid flooding of data bases, mark-
ings with a limited time life are used instead of persistent 
tuples. The mobile device is a transportation unit only. If 
new beacons are detected by the deliver agent, it replicates 
itself and the replicates migrate to the new beacons to de-
liver the sensor data. After delivery, the replicated agents 
terminate (see Fig. 2). 
To avoid deliver agent flooding, a beacon only sent one 
deliver agent to a mobile device and the deliver agent has 
a limited lifetime. 

Notification Agent 
The notification agent is sent to mobile devices or other 
beacons to notify about important events. Notification 
agents are broadcast messenger, with a similar behaviour 
of the deliver agent, including replication. 

The principle network topology and the deployment of 
agents are shown in Fig. 2. It is assumed that mobile devices 
can communicate with beacons only (and vice versa). 

The position of a mobile device given in geographic co-
ordinates by the vector O=(latitude,longitude) can be either 
measured by a GPS receiver or can be estimated by using a 
weighted position triangulation with a set of detected bea-
cons delivering their GPS-based position Oi using short 
range communication (e.g., Bluetooth): 

 
(1) 

 
with rssi as the received signal strength indicator (-dB units) 
used as the weight and a measure for the distance between 
the mobile device and the beacon. and N a normalization 
function mapping rssi levels on linear distance units, e.g., 
N(r)=(r0+r). Usually users of smart phones do not allow 
GPS position tracking, and beacon triangulation can be a 
valuable solution to get the position of mobile devices. 
 



 

Figure 2. Principle network topology with spatially distributed beacons 
(non-mobile) and mobile devices, the MAS and the agent-node interac-
tions. 

Agents exchange information/sensor data via the node 
tuple space without knowing each other, avoiding agent 
identification. Data from one node A (read from the node A 
tuple space) can be transported to another node B (written to 
the node B tuple space) by agents carried on mobile devices. 

The data collected by explorer and deliver agents can be 
used for distributed learning delivering a prediction of 
crowd situations. Distributed agents-based on-line learning 
was discussed in [16], and is not addressed in this work, but 
can easily be added with mobile learner agents. These learn-
er agents can hop between different mobile devices staying 
within a Region-of-Interest (ROI). 

V.USE-CASE: DISTRIBUTED FLOW MONITORING IN A 
BUILDING 

The use-case should demonstrate the MAS deployment in 
mobile networks performing distributed and self-organizing 
sensor fusion and flow monitoring. Sensors of smart phones 
usually delivering sensor data with low accuracy. If there 
are many devices within ROI, multiple sensors can be used 
to compute a more accurate ensemble value. Examples are 
ambient light, temperature, radio signal strength, humidity, 
acceleration, or sound level. In Crowd monitoring, the posi-
tion and the acceleration sensors can be used as an input.  

The MAS consists of different non-mobile and mobile 
agents, discussed in Sec. IV. The goal of the MAS is crowd 
monitoring, delivering a time-resolved spatial matrix of 
three parameters: 1. Population (number of mobile devices 
in a ROI), 2. Agitation (weighted and accumulated move-
ment profile of the users in a small region), and 3. Flow 
(paths from other ROI and beacons). 

The simulation uses collected smart phone data from the 
conference event (Chaos Communication Congress, Ham-
burg, 27.12. - 30.12.14, [9]). The simulation world consists 
of a map of the three floors of the conference building, de-
ployed with multiple non-mobile beacons (triangles), shown 
in Fig. 3. The beacons are positioned by their measured GPS 

position. The mobile devices are positioned either by a 
submitted GPS positions (not available in this experiment) 
or/and by a weighted position triangulation of detected bea-
cons (radio signal strength is used as the weight, Eq. 1.).  

The GPS position of smart phones usually have a poor 
spatial accuracy, and beacon triangulation can deliver more 
accurate results. 

 

 

Figure 3. SEJAM2: JAM Simulation Environment with the world consist-
ing of three floors of a building. Shown are beacons (yellow triangles, each 
populated with a node agent) and some mobile devices (green rectangles). 
The black circles represent Bluetooth links of the devices, indicating the 
communication range. 

 
The SEJAM simulator was connected to multiple SQL3 

data base servers, storing the sensor and monitoring data. 
Experimental simulation results are shown in Fig. 4. The 

agent population of the entire conference network depends 
on smart phone mobility (moving velocity) and the crowd 
flow in the beacon areas. The event-based approach for the 
creation of explorer and deliver agents results in an overall 
low agent density with periods of low activity, reducing 
communication and computation significantly.  

The population of explorer and deliver agents correlates 
significantly with three relevant different events happening 
during the observation time, analyzed in the following dis-
cussion.  

The MAS performs the estimation of different crowd sit-
uations parameters, enabling the distinction of different 
crowd behaviour situations. These computed parameters can 
be considered as virtual sensors of the Nervousnet system. 

 



 

Figure 4. Agent population in the conference network during the first 5000 
simulation steps (start time 1419700000s, end time 1419711914s UTC). 
Total created agents: Mobile: 29, Explorer: 10590, Deliver: 880). 

 
The three relevant virtual sensors <P,A,F> implementing 

sensor fusion are computed by Eq.2., the population meas-
ure P, based on the actual and past connectivity detection of 
mobile devices (connection c), the acceleration sensor data 
delivered by explorer agents (a, the mean value of x-/y-/z- 
direction values) computing the crowd agitation measure A 
in a ROI (i.e., a measure for the small range movement of 
the crowd in the ROI, e.g., a room), and the flow counter 
delivered by the deliver agents (f) used for the computation 
of the flow F. Exponential filtering (with d as a decay con-
stant) is applied to the agitation and flow sensors, and the 
population and agitation sensors use time weighted sensor 
values (t is the current time, t(s) the sensor acquisition time, 
and k a weight factor). Nc is the number of connected nodes, 
and Ns is the number of all aggregated sensors. 

 

 
(2) 

 
The time-resolved crowd population, crowd agitation, 

and crowd flow monitoring results of all beacons in the 
network are shown in Fig. 5. Specific situations, i.e. crowd 
movement or crowd forming can be localized and detected 
based on the locally computed and distributed virtual sensor 
data delivered by the beacon agents. In the simulation there 
are three characteristic situations within the time window 

shown in Fig. 5 (Events 1,2,3). Event 1 shows a crowd for-
mation with moderate population but increased agitation, 
and sporadic flow diffusion. Event 2 shows a crowd for-
mation with an increased population but low agitation and 
diffusion. And finally, event 3 shows high population and 
agitation with increased diffusion behaviour of the crowd. 

VI.CONCLUSIONS AND OUTLOOK 

The use-case showed the suitability of the distributed de-
ployment of MAS in the context of the Planetary Nervous 
system used for crowd sensing. In contrast to many existing 
crowd sensing solutions, the MAS approach with local sen-
sor aggregation and processing will provide an enhanced 
scaling in large-scale scenarios. The original Nervousnet is 
closely related to the Cloud paradigm with server-client 
communication. The MAS can be used to pre-process and 
reduce the raw sensor data of smart phones in a local ROI, 
finally distributed across the ROI by agents carried on mo-
bile devices. Large-scale distributed applications require an 
organisational structure layer, which addresses scalability, 
adaptability, self-organization, robustness, and resource 
constraints, basically composed of agents implementing 
virtual sensors together with the Nervousnet organization. 
Three relevant virtual sensor parameters were computed by 
beacon agents: Crowd population, agitation, and flow, get-
ting sensor input from explorer and deliver agents, carried 
by mobile devices. The agents are represented by mobile 
JavaScript code (AgentJS) that is managed and processed by 
a modular and portable agent platform JAM in a protected 
sandbox environment encapsulating agent processes. JAM is 
implemented entirely in JS, and can be executed on any 
mobile device.  

The virtual sensors are basic cells composing an organi-
sational structure, the Planetary Nervous system, providing 
the high-level platform for social mining. The presented 
approach enables the development of perceptive clouds and 
smart environments of the future integrated in daily use 
computing environments and the Internet. Specific situa-
tions, i.e. crowd movement or crowd forming can be local-
ized and detected based on monitoring data of a simple bea-
con network. The design and platform approach is suitable 
to cover the sensing, aggregation, and application layers of 
large-scale and massively distributed information processing 
systems efficiently, consisting of heterogeneous devices. 
The use-case that bases on real sampled sensor data of smart 
phones collected by Nervousnet showed the suitability of 
the MAS for efficient event-based Crowd sensing. The 
MAS composed of agents with different goals and behav-
iour is able to recognize different crowd situations with dif-
ferent population, agitation, and diffusion (flow) character-
istics just by using the three computed virtual sensor values. 
The low-resource JS machine JVM enables the deployment 
of JAM on IoT devices and smart phones.  
 



 

Figure 5. (Top) Crowd Population, (Middle) Crowd Agitation, and (Bot-
tom) Crowd Flow (diffusion) monitoring from the beacon agents in the 
conference network [Y axis: plot stacking of sensors of individual beacon 
agents, bottom line: beacon 11, top line: beacon 120] 
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