

Engineering Democratization in Internet of Things Data Analytics

Evangelos Pournaras, Jovan Nikolic, Ales Omerzel, Dirk Helbing

Motivation

massive amounts of unstructured real-time data

GOAL: merchandise, service

http://younginnovator.eu/2016/09/behind-the-smart-cities-concept/ https://www.forbes.com/sites/reenitadas/2016/01/07/the-future-of-wearables-can-companies-avoid-the-pitfalls-threatening-healthcare-wearables/

^{#1}dc9bdd16630

http://www.freepik.com/free-photos-vectors/smartphone

Research Question

DEMOCRATIZATION OF DATA ANALYTICS

Overview

Data supplier

Data

consumer

Local sensor data stream

Aggregate sensor data stream

MINIMUM, MAXIMUM,

SUMMATION, AVERAGE, STANDARD DEVIATION, TOP-K

- local computations
- peer-to-peer interaction
- hashed information for efficiency and privacy
- self-correcting operations

DIAS

Visualization of DIAS

Decentralized Data Management

- 1) Computational feasibility of IoT devices
- 2) Accuracy in Analytics:
- 3) Communication costs
- Trade-offs & Decision Making

1. Computational feasibility of IoT devices

- 3 phones with Android OS:
 - Phone 1 (5.1)
 - Phone 2 (6.0.1)
 - Phone 3 (5.0.1)
- Sensor data:
 - **ACCELEROMETER**
 - LIGHT
 - **ACCELEROMETER-LIGHT**
- Varied frequency of sampling between 1 and 60 sec
- Average execution time over 30 repetitions

~ 50%

2. Accuracy in Analytics

- **ECBT** Electricity Customer Behavioral Trial (2009-2010):
 - data from 04.01.2009.
 - collected every 30 minutes
 - total of 48 records per day
 - total of 6435 consumers
 - 3000 residential consumers
- k = 5 possible states
- Varied send factor:
 - SF-1, SF-2, SF-4, SF-8, SF-12, SF-16

(b) summarization error

2. Accuracy in Analytics

- **ECBT** Electricity Customer Behavioral Trial (2009-2010):
 - data from 04.01.2009.
 - collected every 30 minutes
 - total of 48 records per day
 - total of 6435 consumers
 - 3000 residential consumers
- k = 5 possible states
- Varied send factor:
 - SF-1, SF-2, SF-4, SF-8, SF-12, SF-16

(b) overall error

2. Accuracy in Analytics – Overview

- DIAS error ↓ as send factor ↑
- summarization error ↑ as send factor ↑
- overall error (on average) is sum of its parts

3. Communication cost

- **ECBT** Electricity Customer Behavioral Trial (2009-2010):
 - data from 04.01.2009.
 - collected every 30 minutes
 - total of 48 records per day
 - total of 6435 consumers
 - 3000 residential consumers
- k = 5 possible states
- Varied send factor:
 - SF-1, SF-2, SF-4, SF-8, SF-12, SF-16

Number of messages sent

4. Trade-offs & Decision Making

Privacy regulated by:

- Choice of # of possible states
- Choice of send factor

How to choose SF?

4. Trade-offs & Decision Making

- Decision trees (C4.5 algorithm):
- Automatic regulation

(b) Overall vs DIAS error

(a) Summarization vs DIAS error

Conclusion

- √ fully-decentralized
- ✓ generic data aggregation
- ✓ highly dynamic input data stream from IoT devices

FEASIBLE

cost

AUTOMATICALLY REGULATED

PARTICIPATORY DATA ANALYTICS AS PUBLIC GOOD

Future work

- Changes and failures in the network
- Further enhancing privacy & security:
 - differential privacy
 - homomorphic encryption
- Supporting multiple sensor types

Questions?

ETH Zurich

Evangelos Pournaras epournaras@ethz.ch Jovan Nikolic jovan.nikolic@gess.ethz.ch

