
Self-corrective Dynamic Networks via
Decentralized Reverse Computations

Evangelos Pournaras and Jovan Nikolić
Professorship of Computational Social Science

ETH Zurich
Zurich, Switzerland

{epournaras,jnikolic}@ethz.ch

Abstract—The feasibility of large-scale decentralized networks
for local computations, as an alternative to big data systems
that are often privacy-intrusive, expensive and serve exclusively
corporate interests, is usually questioned by network dynamics
such as node leaves, failures and rejoins in the network. This is
especially the case when decentralized computations performed
in a network, such as the estimation of aggregation functions,
e.g. summation, are linked to the actual nodes connected in
the network, for instance, counting the sum using input values
from only connected nodes. Reverse computations are required
to maintain a high aggregation accuracy when nodes leave or
fail. This paper introduces an autonomic agent-based model
for highly dynamic self-corrective networks using decentralized
reverse computations. The model is generic and equips the nodes
with the capability to disseminate connectivity status updates
in the network. Highly resilient agents to the dynamic network
migrate to remote nodes and orchestrate reverse computations
for each node leave or failure. In contrast to related work, no
other computational resources or redundancy are introduced.
The self-corrective model is experimentally evaluated using real-
world data from a smart grid pilot project under highly dynamic
network adjustments that correspond to catastrophic events with
up to 50% of the nodes leaving the network. The model is highly
agile and modular and is applied to the large-scale decentralized
aggregation network of DIAS, the Dynamic Intelligent Aggrega-
tion Service, without major structural changes in its design and
operations. Results confirm the outstanding improvement in the
aggregation accuracy when self-corrective actions are employed
with a minimal increase in communication overhead.

Keywords-self-correction; adaptation; accuracy; reverse com-
putation; data analytics; decentralized network; aggregation;
agent; migration; robustness; fault-tolerance

I. INTRODUCTION

The pervasiveness and increasing computational capacity of
smart Internet of Things devices equipped with networking
capabilities allow complex distributed computations to be
performed over networks, for instance, sensor networks com-
puting the spread of oil spills [1], smart grids measuring power
peaks in energy demand [2] or monitoring of automotive
traffic [3]. Decentralized computations over dynamic networks
are highly challenging to perform accurately and fast under
changing input data, nodes temporarily leaving, failing or re-
joining the network [4], [5], [6], [7], [8]. However, algorithms
for computations in decentralized networks are by design
more privacy-preserving, scalable, respect users’ autonomy
and do not require significant investments in expensive big

data computational resources [9], [10], [11], [12].
This paper studies a complex and challenging problem of

decentralized computations: when computations performed in
each node of a network are linked to the connectivity status
of all other nodes, adaptive or corrective computations are re-
quired to roll-back computational results to the latest network
status in terms of connected nodes. However, orchestrating
adaptation and corrective actions is even more challenging
when nodes leave the network as there are lower computational
resources in the network to employ for this purpose. For
example, consider the problem of decentralized in-network
aggregation [7], [13]: each node in a network computes an
aggregation function, e.g. summation, given an input value
from every connected node. If a node leaves the network, all
summations computed with input from this leaving node need
to be reverted by subtracting its value. Such rollback actions
are referred to in this paper as reverse computations and
they are known for their significance in efficient distributed
systems [14], [15], [16], [17]. The goal of this work is to
design autonomic dynamic networks that are self-corrective
using decentralized reverse computations.

This paper introduces a new agent-based self-corrective
model for dynamic computational networks, which, in contrast
to related work [18], [19], [8], [12], does not rely on replication
servers, proxies, storage of checkpoints or big data analytics
for fault analysis. Each node in the network creates two
software agents, the status and the corrective agent. The
status agent publishes connectivity status information about
the parent node. The corrective agent migrates to other host
nodes from which it monitors the connectivity status of its
parent. If the parent node leaves or fails, its remote corrective
agent initiates and orchestrates reverse computations with the
other nodes in the network. If the parent node reconnects, the
corrective agent terminates its operations and has the option
to migrate back to the parent agent to update the parent’s
outdated state for the time period it has been disconnected. A
fully decentralized gossip-based communication supports the
information exchange and dissemination between the status
and the corrective agent.

The applicability of the proposed self-corrective model
is studied in decentralized in-network aggregation using the
DIAS system [20], [7]. The capability of DIAS to reverse
computations when nodes change the input values in the ag-



gregation functions is extended to nodes leaving and rejoining
the network. In contrast to related work in which agility
comes as a trade-off to resilience [21], the introduction of the
generic and modular self-corrective model in DIAS does not
require any major structural changes in its design. Extensive
experimental results verify the improvement potential of the
aggregation accuracy by the proposed self-corrective model
using real-world data from a smart grid pilot project. Evalua-
tion under lightweight and heavyweight network adjustments
corresponding to catastrophic events with up to 50% of the
nodes leaving the network provides the proof-of-concept.
Results show significant improvement in accuracy, while the
corrective agents manage to tolerate the network dynamics via
consecutive migrations. They eventually perform the required
reverse computations in a symbiotic and autonomic fashion,
while communication cost remains low.

The main contributions of this paper are outlined as follows:
• The introduction of a new agent-based self-corrective

model for orchestrating decentralized reverse computa-
tions in large-scale dynamic networks.

• The expansion of the DIAS functionality with reverse
computations in dynamic networks in which nodes tem-
porarily leaving and rejoining.

• Verification of the improvement potential that reverse
computations have on the aggregation accuracy under
lightweight and heavyweight network adjustments.

This paper is outlined as follows: Section II formulates the
research problem. Section III introduces the self-corrective
model for reverse computations in dynamic networks. Sec-
tion IV illustrates the applicability of the self-corrective model
in the decentralized in-network aggregation of DIAS. Sec-
tion V experimentally evaluates the self-corrective model in
lightweight and heavyweight scenarios of nodes temporarily
leaving and rejoining the network. Section VI compares the
self-corrective model with related work. Finally, Section VII
concludes this paper and outlines future work.

II. DECENTRALIZED REVERSE COMPUTATIONS

Assume the extreme scenario of a decentralized dynamic
network with n nodes each with a local state si ∈ R. The net-
work is dynamic as nodes may temporary leave, fail or rejoin
during the overall system runtime. Each node i ∈ {1, ..., n} of
the network performs a number of n incremental operations
ai,j = f�(sj , ai,j−1) using the input state of every node
j ∈ {1, ..., n} and assuming that ai,0 = 0, for instance.
Given that the network is decentralized, nodes need to discover
each other and establish a remote peer-to-peer interaction
to exchange their local state si and sj . Gossiping protocols
provide effective node discovery in dynamic decentralized net-
works [22]. The sequence (ai,j)nj=1 of n updates completes the
required operations for each node i. Therefore, the presence of
a node in the network determines the required computations
of the other nodes present in the network.

However, assume without loss of generality that the jth
node leaves the network or fails, reverse computations are
required to roll back the result of the earlier computation

ai,j = f�(sj , ai,j−1). Such a reverse computation is defined
as ai,j−1 = f	(sj , ai,j), assuming that the two operations
f�() and f	 are constructive in nature as defined by the
fact that they require no history and only the most current
values of the variables can undo the primary operation [14].
Examples of such operations are the ++, −−, + =, − =,
∗ = and / =, with the two latter ones requiring special
treatment in case of multiplication or devide by zero as well as
overflow and underflow conditions. Reversible operations are
significant and common for several computations in distributed
systems and decentralized networks, for instance, in-network
aggregation for maintaining accuracy [20], parallel simulations
for efficiency in memory utilization [14], fault-tolerance in
large parallel systems [15] as well as data analytics and big
data scientific applications [16], [17].

Given this setting, a self-corrective system property for a
decentralized network with a varied number of participating
nodes due to leaves, failures or rejoins is defined as follows:

Definition 1. A dynamic decentralized network is defined
as self-corrective if for each node i ∈ {1, .., n} performing
once and only once all sequence operations (ai,j)

n
j=1, where

ai,j = f�(sj , ai,j−1), ∀j ∈ {1, .., n}, a respective reverse
computation ai,j−1 = f	(sj , ai,j), ∀i ∈ {1, .., n} and ∀j 6=
i 3 {1, .., n} is performed if and only if the jth node does not
anymore participate in the network, while node i participates.

Without loss of generality, reverse computations are applicable
for any node j. This paper focuses on the design, implemen-
tation and evaluation of an autonomic mechanism that builds
dynamic networks that are self-corrective by design according
to Definition 1.

III. SELF-CORRECTIVE DYNAMIC NETWORKS

This paper introduces an agent-based model for self-
corrective computations in dynamic decentralized networks.
The model is designed with two agents that every node
constructs to collectively form a self-corrective network: (i) the
status agent and (ii) the corrective agent. Figure 1 illustrates
a representative lifecycle of the proposed agent-based model.

The status agent is responsible for reporting the connectivity
status of the node: (i) rejoin, (ii) leave and (iii) failure. The
statuses of the node are disseminated in the network via the
peer sampling service by using the node descriptor. The node
descriptor contains base information such as the IP address, the
port number, the descriptor age, as well as registered applica-
tion information that can be carried within the descriptor. All
necessary information is periodically disseminated via gossip
exchanges of the node descriptor according to the execution
period of the peer sampling service. The failure status is
actually deductive: the status agent does not report an actual
failure but rather that is not failed, given that a node failure
terminates the status agent as well. The failure status is derived
from the age of the descriptor. At every gossip exchange,
a node i resets the age of its descriptor back to zero. The
follow up gossip exchanges by the other nodes increase the



1.	Birth	

2.	Status	update	 4.	Status	monitoring	

3.	Migra8on	
3.1.	Proac8ve	
3.2	Reac8ve	

Parent	 Host	

Correc8ve	Agent	

Status	Agent	

Correc8ve	Agent	

1.	Birth	 5.	Status	

6.	Start	reverse	
computa8ons	

5.1	Leave	

5.2	Failure	

5.3	Rejoin	

Peer	Sampling	Service	

6.	Stop	reverse	
computa8ons	

Dissemina8on	of	status	updates	

Figure 1. The proposed self-corrective agent-based model for dynamic
networks. Each parent node creates a status and corrective agent. The latter
migrates proactively or reactively in another host node. The status agent
registers status information in the network via the peer sampling service.
The migrated corrective agent can remotely receive this status information
and trigger reverse computations when the parent node leaves or fails. If the
node rejoins the network, the reverse computations are terminated.

age descriptor. The disseminated descriptors of a node i in the
network have on average a low age value if node i is connected
and can reset the age descriptor. In contrast, a disconnected
node does not perform gossip exchanges and therefore does
not update the age of the disseminated descriptors. The earlier
work [22] on the peer sampling service provides further
information about the healing process of gossiping using the
age descriptors. All in all, the status agent remains local and
it has minimal tasks for execution.

The corrective agent is responsible for orchestrating the
reverse computations. It operates remotely by migrating in
a secure way [23] from the parent node that creates it to
another connected node, the host node. Migration is performed
(i) proactively, so that the corrective agent does not terminate
when the parent node fails or (ii) reactively, as a result of the
parent node leaving on-demand. These are the two migration
modes of the corrective agent illustrated in Algorithm 1.

Algorithm 1 Proactive and reactive migration of the corrective
agent.
Require: migration mode, peer sampling service

1: loop
2: if migration mode is ‘proactive’ then
3: break
4: else
5: // migration mode is ‘reactive’
6: if local node leaves then
7: break
8: end if
9: end if

10: end loop
11: get random node j from peer sampling service
12: migrate to host j

Consecutive migrations can be performed in case the host
node is disconnected as well. In this case, a second proactive
migration may represent the relocation of the corrective agent
to another more reliable host agent, for instance, a host agent

with a lower age descriptor value. A second reactive migration
may represent the leaving of the host agent from the network.

The main operation of the corrective agent after it migrates
to the host node is to monitor the network for status updates
from its parent node. The corrective agent checks whether the
node descriptor of the parent node is present in the view of
the peer sampling service after every view update. The view
is a buffer list of limited size containing the node descriptors
received from other nodes via gossiping. If the parent node
descriptor is present with a status ‘leave’ or ‘failure’, then
reverse computations are initiated. If the status is ‘rejoin’,
reverse computations that are in-progress are terminated. The
failure status is not explicit and can be detected by an overpass
of a threshold1 in the age descriptor of the parent node.
Algorithm 2 illustrates the main operations of the corrective
agent in the host node.

Algorithm 2 Main operations of the corrective agent in the
host node.
Require: parent i, migration type, peer sampling service

1: for every view update in the peer sampling service do
2: if view has parent descriptor then
3: if parent descriptor status is ‘failure’ or ‘leave’ then
4: start reverse computations
5: else
6: if parent descriptor status is ‘rejoin’ then
7: stop reverse computations
8: if migration type is stateful then
9: migrate to parent i

10: end if
11: else
12: // parent descriptor status is ‘connected’
13: end if
14: end if
15: end if
16: end for

Depending on the computations f�(), f	() of an application
and the network scenario, the corrective agents may transfer
some information from the parent node to the host node
and back to the parent node, after reverse computations are
terminated, so that they guarantee a self-corrective network
according to Definition 1. This defines a stateful migration, in
contrast to a stateless migration in which the corrective agents
do not need to return back to the parent agent rejoining in
order the latter one to continue its operations. If an application
requires explicit historical information about each node j
involved in a computation ai,j = f�(sj , ai,j−1), for instance,
to prevent a double-counting in aggregation [20], [5], [7], a
stateful migration is required.

The proposed multi-agent system equips dynamic decen-
tralized networks with self-healing autonomic properties as
the self-corrective reverse computations are symbiotically per-
formed by the inner nodes of the network without introducing

1The threshold can be selected empirically by an analysis of the uptime
and downtime distributions of the nodes in the network [24], [25].



additional computational resources and redundancy, that are
common in related work [26], [27]. The virtue of this design
approach comes along with some challenges. The overall
system design does not guarantee a self-corrective network
given all uncertainties of large-scale dynamic decentralized
networks. Catastrophic failures can result in the loss of cor-
rective agents. Moreover, highly frequent join and leaves in
the network may turn out reverse computation to be infeasible
if the required convergence time of the peer sampling service
is slower than the observed network dynamics [22]. More-
over, note that the peer sampling service is a highly robust
decentralized protocol, yet it is a probabilistic mechanism.
The goal of this paper is to quantify system performance
and draw conclusions2 about how large-scale decentralized
dynamic networks can maximize the cost-effectiveness of their
self-corrective operations.

IV. DECENTRALIZED AGGREGATION WITH REVERSE
COMPUTATIONS

As a proof of concept, the proposed self-corrective model is
realized in a challenging application scenario of decentralized
in-network aggregation. The problem statement remains as
illustrated in Section II. The operations f�() and f	 computed
are aggregation functions, such as SUMMATION, AVER-
AGE, MAXIMUM, MINIMUM, etc. Reversed computations
in aggregation functions3 are crucial for maintaining a high
accuracy when the local states of the nodes change values.
By first performing reverse computations with the old values
and then aggregating the new values, accuracy is maintained.
DIAS, the Dynamic Intelligent Aggregation Service [20], [7]
is designed to perform accurate in-network aggregation even
when the local state si = pi,s ∈ {pi,1, ..., pi,k} of a node
i changes among a finite set of k possible states. This is
achieved via reverse computations orchestrated by a distributed
efficient memory system of probabilistic data structures, the
bloom filters [28]. Although this powerful capability of DIAS
is exceptional among very few other related methodologies on
decentralized in-network aggregation [13], [5], [6], it cannot
be applied when nodes leave and rejoin the network as well.
The proposed self-corrective model fills this gap by extending
the capability of DIAS to perform reverse computations in
dynamic networks with nodes leaving and rejoining.

The self-corrective model is the new contributed feature
of DIAS and it is applied as follows. Each node i in DIAS
may have an aggregator, a disseminator or both. The dis-
seminator is a software agent that has information about the
possible states (pi,u)ku=1, the local selected state pi,s = si and
historic information forming the distributed memory system.
The aggregator is also a software agent that computes the
aggregation functions and performs reverse computations. It

2Such measurements and conclusions can be used to design empirical
heuristics, e.g. decision trees, to customize system performance as earlier
shown [2], [7]. The design of such heuristics is out of the scope of this paper.

3Although MAXIMUM and MINIMUM are not constructive in nature,
reverse computations can be applied using the TOP-K and BOTTOM-K
respectively as shown in earlier work [7]. In this case, a memory buffer of
size k supports the reverse computations under changes in local states.

stores the output of the aggregation functions and shares part
of the distributed memory system with the disseminators.
Aggregation is performed as follows: disseminators discover
aggregators using the peer sampling service and share their
latest local selected state pi,s = si. Therefore, the introduced
self-corrective model reuses the peer sampling service of
DIAS that is already part of its design. A peer-to-peer remote
interaction between a disseminator and an aggregator that
results in a potentially new incremental computation of an
aggregation function is defined as an aggregation session.

Given that the disseminator is the agent that initiates the
aggregation sessions in the DIAS network, the disseminator
extends all functionality of the corrective agent. It is then capa-
ble of stateful migrations to host nodes when its parent nodes
leaves the network. A migrated disseminator4 to a remote host
initiates aggregations sessions that involve reverse computa-
tions as shown in Figure 2. It is these aggregation sessions
performed between migrated disseminators and aggregators
that create a highly self-corrective DIAS network according
to Definition 1. Migrations are stateful as DIAS relies on
the distributed memory system of bloom filters5. Therefore,
when a parent node rejoins, the disseminator migrates back
with consistent information about all reverse computations
performed during the time period the parent node has been
disconnected.

Aggregator	
f(2+5+1)=8	
Disseminator	

S1=3	

Aggregator	
f(3+2+5+1)=11	
Disseminator	

S2=1	

Aggregator	
f(3+2+5+1)=11	
Disseminator	

S4=5	

Aggregator	
f(3+2+5+1)=11	
Disseminator	

S3=2	

Node	leave	

Migra?on	

[-3]	

(a) Migration.

Aggregator	
f(2+5+1)=8	
Disseminator	

S1=3	

Aggregator	
f(2+5+1)=8	
Disseminator	

S2=1	

Aggregator	
f(2+5+1)=8	
Disseminator	

S4=5	

Aggregator	
f(2+5+1)=8	
Disseminator	

S3=2	
Correc?ve	
ac?ons	[-3]	

[-3]	

[-3]	

[-3]	

Node	leave	

(b) Corrective actions.

Figure 2. An example of how aggregation accuracy is preserved in DIAS via
migration and corrective actions. When a disseminator with a selected state
of value 3 leaves the network, the corrective agent migrates to another host
to apply corrective actions. In this example, the value 3 is removed from the
sum of all other nodes in the network.

The reverse computations are implemented within the main
DIAS runtime of Algorithm 1, 2 and 3 illustrated in earlier
work [7]. The new features are the following: (i) Algorithm 1
is executed by the migrated disseminator that selects aggrega-
tors with which an aggregation session has been earlier per-
formed (classified as exploited or outdated but not unexploited,
line 5). (ii) The computation of the aggregation functions in
Algorithm 2 is an actual reverse computation as defined in
Section II. (iii) The disseminator and aggregator involved in

4It is implemented in DIAS as a serializable object transfered via an Apache
MINA TCP socket.

5Bloom filters offer both space savings and privacy-preservation as no
explicit historic information is migrated [7]. The self-corrective model does
not result in additional information reveal.



the aggregation session are removed from the memory by
decreasing the counters of the counting bloom filters (line 2
and 1 of Algorithm 1 and 2 respectively).

The introduction of the self-corrective model in DIAS
requires almost no changes in its design and main operations.
The distributed memory system remains intact: no new bloom
filters are introduced, consistency in the computations is
guaranteed via the existing bloom filters used in the very
initial design of DIAS [20]. The same exactly holds for the
interactions: an aggregation session is performed in the same
way whether a corrective agent is employed or not. The addi-
tional messages exchanged for the migration of disseminators
is functionality inherited from the introduced corrective agent.

V. EXPERIMENTAL EVALUATION

The self-corrective model in DIAS is implemented in Java
using the Protopeer distributed prototyping toolkit [29]. A
Protopeer implementation6 of the peer sampling service is
part of the DIAS design and it is reused by the self-corrective
model. Both DIAS and the peer sampling service are deployed
in the Euler7 HPC cluster infrastructure of ETH Zurich.

DIAS is fed with real-world data8 from ECBT, the Elec-
tricity Customer Behavior Trial that is a state-of-the-art pilot
project about the electricity consumption in Ireland. The
project ran during the period 2009-2010 with 6435 residential
and small-medium enterprise consumers, from which 3000
residential consumers are used for shorter execution times of
the experiments. Consumption data are collected from smart
meters every 30 minutes. The data of date 4.1.2009 are used
for the experiments. The total records of raw data used in the
experiments are 2 records/hour*24 hours=48 records. Possible
states are extracted from the raw data by performing clustering
with k-means, where k = 5, using the Weka library9.

The epoch duration is selected as 30 minutes/14 DIAS
executions=2.14 minutes (2.14/4=0.5 minutes for the peer
sampling service) to match the data records used. A high
execution rate of DIAS improves convergence speed but also
increases the communication rate, which is though minimized
to zero after convergence. Each experiment runs for 800
epochs in total. The first 100 epochs are used for system boot-
strapping. Aggregation is performed in the next 14*48=672
epochs. The view size of the peer sampling service is 50 with a
swap parameter of 24 and a healer parameter of 1 [13]. Each of
the 3000 nodes of DIAS is equipped with both a disseminator
and an aggregator to test the most demanding scenario. A
maximum of 40 aggregation sessions per epoch are initiated by
each disseminator. Results for the AVERAGE, SUMMATION
and MAXIMUM aggregation functions are presented.

The goal of the experimental evaluation is to show how the
self-corrective model performs in DIAS under a lightweight

6Available at https://github.com/epournaras/PeerSamplingService (last ac-
cessed: January 2017

7Available at http://brutuswiki.ethz.ch (last accessed: January 2017).
8Available at http://www.ucd.ie/issda/data/

commissionforenergyregulationcer/ (last accessed: February 2017)
9Available at https://weka.wikispaces.com (last accessed: February 2017)

and heavyweight scenario of network adjustments focusing10

on leaves and rejoins of nodes. In both scenarios, the specific
nodes leaving the network are fixed between the different
experiments to compare the results. In the lightweight sce-
nario, the number of connected nodes in the network are
incrementally varied by a maximum of 20% as follows:

1) UP-DOWN: During bootstrapping, 20% of the nodes
leave the network. In the first half of the aggregation
time (the first 336 epoch after bootstrapping), nodes
incrementally rejoin the network. The reverse process
follows with 20% of the nodes incrementally leaving
the network for the second half of the aggregation time.

2) DOWN-UP: After bootstrapping and during the first half
of the aggregation time, meaning the first 336 epoch
after bootstrapping, 20% of the nodes incrementally
leave the network. The reverse process follows for the
rest of the second half of the aggregation time with all
left nodes incrementally rejoining the network.

The incremental leaves and rejoins are uniformly distributed
in each UP and DOWN phase, yet, they are performed in
varying batches of leaving and rejoining nodes, the departure
steps (DS). The following departure steps are defined: (i)
DS-75, (ii) DS-120, (iii) DS-200 and (iv) DS-300. DS-300
completes the leaves and rejoins of 20% (600) of the nodes in
2 steps, whereas, DS-75 performs 8 steps. Figure 4a and 4b
illustrate the number of connected nodes in the network for
UP-DOWN, DOWN-UP and varying departure steps.

In contrast, the heavyweight scenario of network adjust-
ments incrementally removes 50% (1500) of the nodes in the
network with varying speed referred to as departure period.
The following departure periods are used in the experiments:
(i) DP-10, (ii) DP-15 and (iii) DP-20. The number of nodes
removed in each incremental step is controlled by the depar-
ture steps, as in the case of the lightweight scenario. In the
heavyweight scenario, the following departure steps are used:
(i) DS-50, (ii) DS-100, (iii) DS-150 and (iv) DS-250. Figure 8a
to 8b show the number of connected nodes in the network for
varying departure steps and periods.

The following measurements characterize the performance
of the self-corrective model on DIAS:

• Accuracy: This is the average relative error of the ag-
gregation functions in DIAS, defined by the absolute
difference between actual and estimated values divided by
the actual values. The accuracy evaluates the effectiveness
of the self-corrective network according to Definition 1.

• Communication cost: The total number of DIAS mes-
sages and the number of messages originated by the
migrations are measured. The communication cost of the
peer sampling service is not shown as it is constant and
it is governed by the execution period.

• Rate of migration success: This is the number of success-
ful (consecutive) migrations divided by the total number

10Due to space limitations the focus is on nodes leaves and rejoins. Failure
scenarios simply require activation of proactive migrations. Therefore all
findings shown in this paper indicate the model performance under failures.



of migrations initiated in each epoch. An unsuccessful
migration occurs when the local node of the corrective
agent has to leave the network, the agent chooses a new
random host node from the peer sampling service to
migrate, however, this new host node has already left the
network and as a result, the corrective agent is lost.

The rest of this section illustrates the experimental results
under the lightweight and heavyweight network adjustments.

A. The improvement potential of accuracy

Table I and II verify the improvement potential in the accu-
racy of DIAS by the self-corrective model. A self-corrective
DIAS network is compared to a network in which no corrective
actions are employed, yet all input values from the connected
nodes are counted in the aggregation functions. These are the
actual ‘true’ values. Errors originated from non-convergence
are excluded and the evaluation focuses on errors coming
from node leaves. Results are shown for the SUMMATION
that is highly influenced by node leaves. Results for the other
aggregation functions confirm the conclusions of this section.
The measurements of the relative errors are counted after the
computation of the aggregation functions is converged and at
the epochs when nodes leave the network. These are the epochs
500-800 and 250-400 in the UP-DOWN and DOWN-UP
phases of the lightweight scenario respectively (see Figure 4a
and 4b). In the heavyweight scenario, errors are measured after
the 250th epoch and as long as the network size remains lower
than 3000 (see Figure 8a and 8b).

Table I
AVERAGE RELATIVE ERRORS UNDER LIGHTWEIGHT NETWORK

ADJUSTMENTS IN A NON-CORRECTIVE VS. A SELF-CORRECTIVE
NETWORK OF DIAS.

Departure Step Adjustment Non-corrective Self-corrective
DS-75 UP-DOWN 0.17 0.07
DS-75 DOWN-UP 0.19 0.18

DS-120 UP-DOWN 0.17 0.07
DS-120 DOWN-UP 0.19 0.18
DS-200 UP-DOWN 0.16 0.07
DS-200 DOWN-UP 0.20 0.18
DS-300 UP-DOWN 0.15 0.09
DS-300 DOWN-UP 0.20 0.16

Table II
AVERAGE RELATIVE ERRORS UNDER HEAVYWEIGHT NETWORK
ADJUSTMENTS IN A NON-CORRECTIVE VS. A SELF-CORRECTIVE

NETWORK OF DIAS.

Departure step Departure period Non-corrective Self-corrective
DS-50 DP-10 0.16 0.12
DS-50 DP-15 0.28 0.13
DS-50 DP-20 0.43 0.10
DS-100 DP-10 0.25 0.12
DS-100 DP-15 0.22 0.12
DS-100 DP-20 0.17 0.12
DS-150 DP-10 0.25 0.11
DS-150 DP-15 0.25 0.12
DS-150 DP-20 0.24 0.13
DS-250 DP-10 0.25 0.09
DS-250 DP-15 0.25 0.10
DS-250 DP-20 0.25 0.10

Results confirm the significant improvement potential of
accuracy. A self-corrective network decreases the errors 29%
and 55% on average in the lightweight and heavyweight
scenarios respectively.

B. Lightweight network adjustments

Figure 3 illustrates the average accuracy of the self-
corrective model on DIAS under lightweight network ad-
justments. The following key observations are made: (i) In
SUMMATION, the average relative error decreases by 6.46%
and 15.23% during the UP phases by increasing the departure
step from DS-75 to DS-300, while it increases by 20.27%
and 3.19% during the DOWN phases. (ii) AVERAGE shows
the same, but less significant trend with the respective val-
ues of 3.36% and 7.99% during UP and 5.57% and 1.28%
during DOWN. (ii) In MAXIMUM, the average relative error
decreases in all individual phases. The accuracy of SUMMA-
TION over runtime is illustrated in Figure 4c and 4d. The
baseline performance of FIXED refers to DIAS operating with
all the 3000 nodes connected.

��
�����

����
�����

����
�����

����
�����

����

�
����

�
�����

�
�����

�
�����

�
����

�
�����

�
�����

�
�����

�
����

�
�����

�
�����

�
�����

�
�
�
��
�
�

�
�
�
��
���
�

�
�
��
�
�

��������������

����������
������������
������������

����������

����������
������������
������������

����������

����������
������������
������������

����������

���������

Figure 3. Average accuracy of the aggregation functions under leightweight
network adjustments.

Figure 4e and 4f illustrate the number of messages ex-
changed for varying departure steps. The number of mes-
sages for UP-DOWN and DOWN-UP decreases 9.28% and
9.09% on average compared to FIXED despite the additional
messages consumed for the migrations when nodes leave and
rejoin. This is also confirmed in Figure 5a. The decrease in
the communication cost is maximized when the number of
nodes reaches the minimum during the DOWN phases. There
are certain time points in which the communication costs
under leaves and rejoins overpasses FIXED. This is when the
network recovers its full size, while migrations that are still
in progress cause the additional communication overhead.

Figure 5a illustrates the total number of messages aggre-
gated over runtime. DS-300 has on average 2.89% lower
communication cost than DS-120 in DOWN-UP, whereas, it is
1.41% higher in the UP-DOWN phase. The UP phase of UP-
DOWN has the communication cost level of the DOWN phase
in DOWN-UP. Respectively, the same holds for the DOWN
phase of UP-DOWN and the UP phase of DOWN-UP.

Figure 6a and 6b illustrate the communication cost origi-
nated from the consecutive migrations of the corrective agents.



�����

�����

�����

�����

�����

�����

�����

�����

�����

���� ���� ���� ���� ���� ���� ���� ����

�
�
�
�
�
��
�
��
�
�
�
�
�

�����

�����
������
������
������

�����

�����

�����

�����

�����

�����

�����

�����

�����

���� ���� ���� ���� ���� ���� ���� ����

�
�
�
�
�
��
�
��
�
�
�
�
�

�����

(a) Connected nodes, UP-DOWN.

�����

�����

�����

�����

�����

�����

�����

�����

�����

���� ���� ���� ���� ���� ���� ���� ����

�
�
�
�
�
��
�
��
�
�
�
�
�

�����

�����
������
������
������

�����

�����

�����

�����

�����

�����

�����

�����

�����

���� ���� ���� ���� ���� ���� ���� ����

�
�
�
�
�
��
�
��
�
�
�
�
�

�����

(b) Connected nodes, DOWN-UP.

��

����

����

����

����

��

���� ���� ���� ���� ���� ���� ���� ����

�
�
��
���
�

�
�
��
�
�

�����

�����
�����
������
������
������

��

����

����

����

����

��

���� ���� ���� ���� ���� ���� ���� ����

�
�
��
���
�

�
�
��
�
�

�����

(c) SUMMATION accuracy, UP-
DOWN.

��

����

����

����

����

��

���� ���� ���� ���� ���� ���� ���� ����

�
�
��
���
�

�
�
��
�
�

�����

�����
�����
������
������
������

��

����

����

����

����

��

���� ���� ���� ���� ���� ���� ���� ����

�
�
��
���
�

�
�
��
�
�

�����

(d) SUMMATION accuracy, DOWN-
UP.

��

������

�������

�������

�������

�������

���� ���� ���� ���� ���� ���� ���� ����

�
�
�
�
�
��
�
��
�
�
�
�
�
�
�
�

�����

�����
�����
������
������
������

��

������

�������

�������

�������

�������

���� ���� ���� ���� ���� ���� ���� ����

�
�
�
�
�
��
�
��
�
�
�
�
�
�
�
�

�����

(e) Total number of messages, UP-
DOWN.

��

������

�������

�������

�������

�������

���� ���� ���� ���� ���� ���� ���� ����

�
�
�
�
�
��
�
��
�
�
�
�
�
�
�
�

�����

�����
�����
������
������
������

��

������

�������

�������

�������

�������

���� ���� ���� ���� ���� ���� ���� ����

�
�
�
�
�
��
�
��
�
�
�
�
�
�
�
�

�����

(f) Total number of messages,
DOWN-UP.

��

����

����

����

����

��

���� ���� ���� ���� ���� ���� ���� ����

�
�
��

�
�
��
�
��
��
���
�

�
�
�
�
�
�
�
�

�����

�����
������
������
������

��

����

����

����

����

��

���� ���� ���� ���� ���� ���� ���� ����

�
�
��

�
�
��
�
��
��
���
�

�
�
�
�
�
�
�
�

�����

(g) Rate of migration success, UP-
DOWN.

��

����

����

����

����

��

���� ���� ���� ���� ���� ���� ���� ����

�
�
��

�
�
��
�
��
��
���
�

�
�
�
�
�
�
�
�

�����

�����
������
������
������

��

����

����

����

����

��

���� ���� ���� ���� ���� ���� ���� ����

�
�
��

�
�
��
�
��
��
���
�

�
�
�
�
�
�
�
�

�����

(h) Rate of migration success,
DOWN-UP.

Figure 4. Performance of the self-corrective model on DIAS over its
runtime under leightweight network adjustments. (a)-(b) Number of nodes
in the network. (c)-(d) Accuracy of SUMMATION. (e)-(f) Total number of
messages. (g)-(h) Rate of migration success.

Migrations back to the parent nodes are indicated in the plots

��

������

������

������

������

������

��������

�
���
���
�
�
�

�
�
�
�
��
���
�
�
�

�
�
�
�
��
�
�
�
��
�

�
���
�
�
�
��
�

�
�
�
�
�
��
�
��
�
�
�
�
�
�
�
�

�����
������
������
������

(a) Total number of messages.

����

�����

����

�����

����

�����

��

�
����

�
�����

�
�����

�
�����

�
�
��

�
�
��
�
��
��
���
�

�
�
�
�
�
�
�
�

��������������

�������
�������

(b) Rate of migration success.

Figure 5. Total number of messages and rate of migration success aggregated
over runtime under leightweight network adjustments.

as ‘returns’. The peaks in the plots correspond to the steps
of node rejoins and the return migrations back to the parent
nodes. Although the number of migrations from parent to host
and from host to parent should be approximately the same11

as shown in Figure 6c, the plots show that returns are highly
spread over time given the convergence delay for discovering
that rejoining parent nodes. In contrast, the migrations from
parent to host happen in steps that justify the fewer samples
with higher values appearing in the plots.

��

���

����

�����

���� ���� ���� ���� ���� ���� ���� ����

�
�
�
�
�
��
�
��
�
�
�
�
�
�
�
�

�����

��������
�����
������
������
������

�����������
�����
������
������
������

��

���

����

�����

���� ���� ���� ���� ���� ���� ���� ����

�
�
�
�
�
��
�
��
�
�
�
�
�
�
�
�

�����

(a) Number of messages from migra-
tions, UP-DOWN.

��

���

����

�����

���� ���� ���� ���� ���� ���� ���� ����

�
�
�
�
�
��
�
��
�
�
�
�
�
�
�
�

�����

��������
�����
������
������
������

�����������
�����
������
������
������

��

���

����

�����

���� ���� ���� ���� ���� ���� ���� ����

�
�
�
�
�
��
�
��
�
�
�
�
�
�
�
�

�����

(b) Number of messages from migra-
tions, DOWN-UP.

��

����

����

����

����

����

����

����

����

�
����

�
�����

�
�����

�
�����

�
����

�
�����

�
�����

�
�����

�
�
�
�
�
��
�
��
�
�
�
�
�
�
�
�

��������������

��������������������
��������������������

�����������������
�����������������

��������

�����������������

(c) Number of messages originated from migrations aggregated over runtime.

Figure 6. The communication cost of migrations under leightweight network
adjustments.

Figure 6c illustrates the number of messages originated from

11With the exception of consecutive migrations from host to host that add
additional communication overhead.



migrations aggregated over runtime. The baseline shows the
optimal case of 600 messages consumed for parent to host
migrations and host to parent returns. The baseline means
that no consecutive migrations need to be performed and no
corrective agents are lost in migrations. Results show that
parent to host migrations are 13.69% higher than baseline,
whereas host to parent returns are 3.42% lower than baseline.

Figure 4g and 4h show the rate of migration success that
remains on average at high values for all departure steps
in both UP-DOWN and DOWN-UP. Figure 5b summarizes
the rate of migration success for varying departure steps. As
the departure step increases, the rate of migration success
decreases on average, suggesting that self-corrective actions
are more effective when network adjustments are performed
incrementally at several small steps. This is also confirmed by
the number of return messages that are closer to the baseline in
Figure 6c. The rate of migration success increases on average
5.57% as the departure steps changes from DS-300 to DS-75.

C. Heavyweight network adjustments

Figure 7 illustrates the average accuracy of the self-
corrective model on DIAS under heavyweight network ad-
justments. The following key observations are made: (i) The
departure period does not influence significantly the accuracy.
(ii) In SUMMATION, the average relative error decreases
21.17% on average as the departure step changes from DS-300
to DS-50. In MAXIMUM, the respective decrease is 48.01%.
(iii) In AVERAGE, no significant differences are observed.
The accuracy of SUMMATION over runtime is illustrated in
Figure 8c and 8d.

��
�����

����
�����

����
�����

����
�����

����

�
����

�
����

�
����

�
����

�
����

�
����

�
����

�
����

�
�����
�
�
��
�
�

�
�
�
��
���
�

�
�
��
�
�

��������������

�����������
������������
������������
������������
������������

�����������
������������
������������
������������
������������

�����������
������������
������������
������������
������������

���������

Figure 7. Average accuracy of the aggregation functions under heavyweight
network adjustments.

Figure 8e and 8f illustrate the influence of the departure
period on communication cost. As shown in Figure 8e for DS-
50, nodes leave the network till the 700th epoch in DP-20,
in contrast to DP-10 that completes the network adjustment
in almost 400 epochs. The number of messages exchanged
decreases when the duration of the network adjustment is
longer as also confirmed in Figure 9a that shows 15.52%
decrease from DP-10 to DP-20 for DS-50.

Figure 9a illustrates the aggregated total number of mes-
sages for varying departure steps and periods. The communica-
tion cost for different departure periods remains approximately

�����

�����

�����

�����

�����

�����

�����

�����

�����

���� ���� ���� ���� ���� ���� ���� ����

�
�
�
�
�
��
�
��
�
�
�
�
�

�����

�����
�����
�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

���� ���� ���� ���� ���� ���� ���� ����

�
�
�
�
�
��
�
��
�
�
�
�
�

�����

(a) Connected nodes, DS-50.

�����

�����

�����

�����

�����

�����

�����

�����

�����

���� ���� ���� ���� ���� ���� ���� ����

�
�
�
�
�
��
�
��
�
�
�
�
�

�����

�����
�����
�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

���� ���� ���� ���� ���� ���� ���� ����

�
�
�
�
�
��
�
��
�
�
�
�
�

�����

(b) Connected nodes, DS-150.

��

����

����

����

����

��

���� ���� ���� ���� ���� ���� ���� ����

�
�
��
���
�

�
�
��
�
�

�����

�����
�����
�����
�����

��

����

����

����

����

��

���� ���� ���� ���� ���� ���� ���� ����

�
�
��
���
�

�
�
��
�
�

�����

(c) SUMMATION accuracy, DS-50.

��

����

����

����

����

��

���� ���� ���� ���� ���� ���� ���� ����

�
�
��
���
�

�
�
��
�
�

�����

�����
�����
�����
�����

��

����

����

����

����

��

���� ���� ���� ���� ���� ���� ���� ����

�
�
��
���
�

�
�
��
�
�

�����

(d) SUMMATION accuracy, DS-150.

��

������

�������

�������

�������

�������

���� ���� ���� ���� ���� ���� ���� ����

�
�
�
�
�
��
�
��
�
�
�
�
�
�
�
�

�����

�����
�����
�����

��

������

�������

�������

�������

�������

���� ���� ���� ���� ���� ���� ���� ����

�
�
�
�
�
��
�
��
�
�
�
�
�
�
�
�

�����

(e) Total number of messages, , DS-
50.

��

������

�������

�������

�������

�������

���� ���� ���� ���� ���� ���� ���� ����

�
�
�
�
�
��
�
��
�
�
�
�
�
�
�
�

�����

�����
�����
�����

��

������

�������

�������

�������

�������

���� ���� ���� ���� ���� ���� ���� ����

�
�
�
�
�
��
�
��
�
�
�
�
�
�
�
�

�����

(f) Total number of messages, , DS-
150.

����

�����

����

�����

����

�����

����

�����

��

���� ���� ���� ���� ���� ���� ���� ����

�
�
��

�
�
��
�
��
��
���
�

�
�
�
�
�
�
�
�

�����

�����
�����
�����

����

�����

����

�����

����

�����

����

�����

��

���� ���� ���� ���� ���� ���� ���� ����

�
�
��

�
�
��
�
��
��
���
�

�
�
�
�
�
�
�
�

�����

(g) Rate of migration success, DS-50.

����

�����

����

�����

����

�����

����

�����

��

���� ���� ���� ���� ���� ���� ���� ����

�
�
��

�
�
��
�
��
��
���
�

�
�
�
�
�
�
�
�

�����

�����
�����
�����

����

�����

����

�����

����

�����

����

�����

��

���� ���� ���� ���� ���� ���� ���� ����

�
�
��

�
�
��
�
��
��
���
�

�
�
�
�
�
�
�
�

�����

(h) Rate of migration success, DS-
150.

Figure 8. Performance of the self-corrective model on DIAS over its
runtime under heavyweight network adjustments. (a)-(b) Number of nodes
in the network. (c)-(d) Accuracy of SUMMATION. (e)-(f) Total number of
messages. (g)-(h) Rate of migration success.

the same, however, as in the case of the lightweight network
adjustment, higher departure steps have a lower communica-



tion cost, for instance, DS-300 has on average 6.29% lower
number of messages than DS-50.

��

������

������

������

������

������

��������

�
����

�
����

�
����

�
�
�
�
�
��
�
��
�
�
�
�
�
�
�
�

����������������

�����
������

������
������

������

(a) Total number of messages.

����

�����

�����

�����

�����

�����

�����

�����

�����

�����

��

�
����

�
�����

�
�����

�
�����

�
�����

�
�
�
��
�
�

�
�
�
��

�
�
��
�
��
��
���
�

�
�
�
�
�
�
�
�

��������������

�����
�����
�����

(b) Rate of migration success.

Figure 9. Total number of messages and rate of migration success aggregated
over runtime under heavyweight network adjustments.

Figure 10 illustrates the number of messages originated
from migrations aggregated over runtime. The baseline shows
the optimal case of 1500 messages consumed for parent to host
migrations and host to parent returns. As in the lightweight
scenario of network adjustments, the baseline means that no
consecutive migrations need to be performed and no corrective
agents are lost in migrations. Results show that parent to host
migrations are 26.59% higher than the baseline, whereas host
to parent returns are 5.51% lower than the baseline.

��

����

�����

�����

�����

�����

�
����

�
����

�
����

�
����

�
����

�
����

�
�
�
�
�
��
�
��
�
�
�
�
�
�
�
�

����������������

������������������
�������������������
�������������������
�������������������

�������������������

���������������
����������������

����������������
����������������
����������������

��������

�����������������

Figure 10. Number of messages aggregated over runtime originated from
migrations under heavyweight network adjustments.

Figure 8g and 8h show the rate of migration success
for different departure steps and periods. Strikingly, the rate
remains over 70% in all cases even under heavyweight network
adjustments, showing that the corrective agents manage to find
a host and perform their operations even when half of the
network fails. Figure 9b confirms the high average rates of
migration success that increases for lower departure steps as
also in the case of lightweight network adjustments. DS-50
has 7.2% higher rate of migration success than DS-300.

VI. COMPARISON WITH RELATED WORK

To the best of authors’ knowledge, there is no other correc-
tive model for large-scale decentralized dynamic networks for
a fair and meaningful quantitative comparison. Therefore, this
section focuses on a qualitative comparison.

A majority of fault-detection, replication and fault-tolerance
mechanisms for multi-agent systems are managed in a central-
ized fashion by dedicated, for this purpose, replication servers,
proxies and storage of checkpoints [18], [19], [8]. In contrast,
the agents of the proposed self-corrective model rely on the
peer sampling service for a fully decentralized detection and
orchestration of reverse computations. No additional resources
are required as the corrective agents operate in a symbiotic
fashion within the nodes of the network.

A self-healing web of things agent-based architecture is
earlier introduced [30] that models detection, diagnosis and
recovery processes. The architecture is mainly conceptual
and is not experimentally validated. It focuses on healing
aspects rather than corrective computations. It is not clear how
it can be applied in large-scale decentralized computational
networks, in contrast to this work that extensively illustrates
experimental findings on self-corrective aggregation networks
under challenging network scenarios of leaving and rejoining.

There is a class of fault-tolerance algorithms for computa-
tional problems with large numbers of parallel processes. Such
algorithms are based on checkpoint rollback-recovery and
restart mechanisms [31]. An earlier algorithmic checkpoint-
free fault-tolerance approach is introduced to significantly de-
crease the high memory overhead of periodic checkpoints for
parallel matrix computations [32]. Hybrid methods combining
checkpoints and checksum storage are designed to cope with a
broader range of dense matrix factorization problems [33]. In
contrast to all these methods designed for failures of parallel
computational processes, the proposed self-corrective model
focuses on large-scale decentralized networks in which nodes
may temporarily leave, fail or rejoin and do not share a
common memory space or local data transfers.

Other earlier work argues that the tremendous growth in the
volume of control data and application measurements, such as
mobile cellular networks, often turns self-healing and fault-
tolerance infeasible and unscalable without the employment of
big data models and technologies [12]. In contrast, this work
shows that accurate network analytics in dynamic networks
can be performed out of the context of big data based on
autonomic self-corrective mechanisms, i.e. the realization of
the proposed self-corrective model in DIAS.

Finally, there are significant links between privacy and
self-corrective computations under network adjustments. For
instance, consider the computation of aggregation functions
using differential privacy that is relevant in the context of
reverse computations and DIAS as well. Even in the case
of a single node failure, the noises in the input values are
not canceled out and therefore aggregations functions cannot
be computed. Grouping of nodes and data structures such
as binary interval trees can make the privacy-preservation of
aggregation more resilient to node failure [34], [35].

VII. CONCLUSION AND FUTURE WORK

This paper concludes that designing large-scale dynamic
computational networks with autonomic self-corrective ca-
pabilities enabled by decentralized reverse computations is



feasible. This is experimentally evaluated using real-world data
from a smart grid pilot project under extreme network adjust-
ments corresponding to catastrophic events with up to 50%
of the nodes leaving the network. In contrast to related work,
the proposed model does not employ additional computational
resources for redundancy. Instead it utilizes the inner network
resources in a symbiotic autonomic fashion to collectively
orchestrate reverse computations that enable a network to be
self-corrective by-design. The model proves to be generic and
modular when applied in the DIAS aggregation system as no
major structural changes are required in the design.

Future work includes the experimental evaluation of the
self-corrective model under node failures. Expanding the scope
of the model to other network dynamics, for instance, revers-
ing computations of malicious nodes infected during system
runtime can provide new insights for self-defense mechanisms
in large-scale computational networks [36], [23].

REFERENCES

[1] A. Loukas, M. Zuniga, I. Protonotarios, and J. Gao, “How to identify
global trends from local decisions? event region detection on mobile
networks,” in IEEE INFOCOM 2014-IEEE Conference on Computer
Communications. IEEE, 2014, pp. 1177–1185.

[2] E. Pournaras, M. Vasirani, R. E. Kooij, and K. Aberer, “Decentralized
planning of energy demand for the management of robustness and
discomfort,” IEEE Transactions on Industrial Informatics, vol. 10, no. 4,
pp. 2280–2289, 2014.

[3] B. Hoh, M. Gruteser, R. Herring, J. Ban, D. Work, J.-C. Herrera,
A. M. Bayen, M. Annavaram, and Q. Jacobson, “Virtual trip lines
for distributed privacy-preserving traffic monitoring,” in Proceedings of
the 6th international conference on Mobile systems, applications, and
services. ACM, 2008, pp. 15–28.

[4] K. Sohrabi, J. Gao, V. Ailawadhi, and G. Pottie, “A self organizing wire-
less sensor network,” in Proceedings of the Annual Allerton Conference
on Communication Control and Computing, vol. 37. The University;
1998, 1999, pp. 1201–1210.

[5] A. Guerrieri, A. Montresor, and Y. Velegrakis, “Top-k item identification
on dynamic and distributed datasets,” in European Conference on
Parallel Processing. Springer, 2014, pp. 270–281.

[6] L. Nyers and M. Jelasity, “A comparative study of spanning tree
and gossip protocols for aggregation,” Concurrency and Computation:
Practice and Experience, vol. 27, no. 16, pp. 4091–4106, 2015.

[7] E. Pournaras, J. Nikolic, A. Omerzel, and D. Helbing, “Engineering
democratization in internet of things data analytics,” in Proceedings
of the 31st IEEE International Conference on Advanced Information
Networking and Applications-AINA-2017.

[8] R. Stanković, M. Štula, and J. Maras, “Evaluating fault tolerance
approaches in multi-agent systems,” Autonomous Agents and Multi-
Agent Systems, vol. 31, no. 1, pp. 151–177, 2017.

[9] S. Gürses, C. Troncoso, and C. Diaz, “Engineering privacy by design,”
Computers, Privacy & Data Protection, vol. 14, no. 3, 2011.

[10] P. Tambe, “Big data investment, skills, and firm value,” Management
Science, vol. 60, no. 6, pp. 1452–1469, 2014.

[11] D. Helbing and E. Pournaras, “Society: Build digital democracy,”
Nature, vol. 527, pp. 33–34, 2015.

[12] E. J. Khatib, R. Barco, P. Munoz, I. D. L. Bandera, and I. Serrano,
“Self-healing in mobile networks with big data,” IEEE Communications
Magazine, vol. 54, no. 1, pp. 114–120, January 2016.

[13] M. Jelasity, A. Montresor, and O. Babaoglu, “Gossip-based aggregation
in large dynamic networks,” ACM Transactions on Computer Systems
(TOCS), vol. 23, no. 3, pp. 219–252, 2005.

[14] C. D. Carothers, K. S. Perumalla, and R. M. Fujimoto, “Efficient
optimistic parallel simulations using reverse computation,” ACM Trans-
actions on Modeling and Computer Simulation (TOMACS), vol. 9, no. 3,
pp. 224–253, 1999.

[15] K. S. Perumalla and A. J. Park, “Reverse computation for rollback-based
fault tolerance in large parallel systems,” Cluster Computing, vol. 17,
no. 2, pp. 303–313, 2014.

[16] E. Deelman, C. Carothers, A. Mandal, B. Tierney, J. S. Vetter, I. Baldin,
C. Castillo, G. Juve, D. Król, V. Lynch et al., “Panorama: An approach
to performance modeling and diagnosis of extreme-scale workflows,”
International Journal of High Performance Computing Applications, p.
1094342015594515, 2015.

[17] D. Zhao, N. Liu, D. Kimpe, R. Ross, X.-H. Sun, and I. Raicu, “To-
wards exploring data-intensive scientific applications at extreme scales
through systems and simulations,” IEEE Transactions on Parallel and
Distributed Systems, vol. 27, no. 6, pp. 1824–1837, 2016.

[18] A. Fedoruk and R. Deters, “Improving fault-tolerance by replicating
agents,” in Proceedings of the first international joint conference on
Autonomous agents and multiagent systems: part 2. ACM, 2002, pp.
737–744.

[19] R. Singh and M. Dave, “Using host criticalities for fault tolerance in
mobile agent systems,” in Parallel Distributed and Grid Computing
(PDGC), 2012 2nd IEEE International Conference on. IEEE, 2012,
pp. 67–72.

[20] E. Pournaras, M. Warnier, and F. M. Brazier, “A generic and adaptive
aggregation service for large-scale decentralized networks,” Complex
Adaptive Systems Modeling, vol. 1, no. 1, p. 1, 2013.

[21] E. Gelenbe and Y. Wang, “A trade-off between agility and resilience,”
in Proceedings of the 13th Turkish symposium on artificial intelligence
and neural networks, 2004, pp. 209–217.

[22] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and
M. Van Steen, “Gossip-based peer sampling,” ACM Transactions on
Computer Systems (TOCS), vol. 25, no. 3, p. 8, 2007.

[23] S. Bijani and D. Robertson, “A review of attacks and security approaches
in open multi-agent systems,” Artificial Intelligence Review, vol. 42,
no. 4, pp. 607–636, 2014.

[24] R. Bhagwan, S. Savage, and G. M. Voelker, “Understanding availability,”
in International Workshop on Peer-to-Peer Systems. Springer, 2003, pp.
256–267.

[25] S. Herker, W. Kiess, X. An, and A. Kirstädter, “On the trade-off between
cost and availability of virtual networks,” in Networking Conference,
2014 IFIP. IEEE, 2014, pp. 1–9.

[26] M. Randles, D. Lamb, E. Odat, and A. Taleb-Bendiab, “Distributed
redundancy and robustness in complex systems,” Journal of Computer
and System Sciences, vol. 77, no. 2, pp. 293–304, 2011.

[27] J. P. Sterbenz, D. Hutchison, E. K. Çetinkaya, A. Jabbar, J. P. Rohrer,
M. Schöller, and P. Smith, “Redundancy, diversity, and connectivity
to achieve multilevel network resilience, survivability, and disruption
tolerance invited paper,” Telecommunication Systems, vol. 56, no. 1, pp.
17–31, 2014.

[28] A. Broder and M. Mitzenmacher, “Network applications of bloom filters:
A survey,” Internet mathematics, vol. 1, no. 4, pp. 485–509, 2004.

[29] W. Galuba, K. Aberer, Z. Despotovic, and W. Kellerer, “Protopeer: a
p2p toolkit bridging the gap between simulation and live deployement,”
in Proceedings of the 2nd International Conference on Simulation
Tools and Techniques. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), 2009, p. 60.

[30] R. A. Arocha, M. Manouvrier, and M. Rukoz, “An agent architecture
to enable self-healing and context-aware web of things applications,” in
International Conference on Internet of Things and Big Data (IoTBD
2016), 2016, pp. 82–87.

[31] I. P. Egwutuoha, D. Levy, B. Selic, and S. Chen, “A survey of
fault tolerance mechanisms and checkpoint/restart implementations for
high performance computing systems,” The Journal of Supercomputing,
vol. 65, no. 3, pp. 1302–1326, 2013.

[32] Z. Chen, “Scalable techniques for fault tolerant high performance
computing,” Ph.D. dissertation, University of Tennessee, 2006.

[33] A. Bouteiller, T. Herault, G. Bosilca, P. Du, and J. Dongarra, “Algorithm-
based fault tolerance for dense matrix factorizations, multiple failures
and accuracy,” ACM Trans. Parallel Comput., vol. 1, no. 2, pp. 10:1–
10:28, Feb. 2015.

[34] J. Won, C. Y. Ma, D. K. Yau, and N. S. Rao, “Proactive fault-
tolerant aggregation protocol for privacy-assured smart metering,” in
IEEE INFOCOM 2014-IEEE Conference on Computer Communications.
IEEE, 2014, pp. 2804–2812.

[35] T.-H. H. Chan, E. Shi, and D. Song, “Privacy-preserving stream aggre-
gation with fault tolerance,” in International Conference on Financial
Cryptography and Data Security. Springer, 2012, pp. 200–214.

[36] B. Sun, X. Shan, K. Wu, and Y. Xiao, “Anomaly detection based secure
in-network aggregation for wireless sensor networks,” IEEE Systems
Journal, vol. 7, no. 1, pp. 13–25, 2013.


