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Threats & Challenges 

Data Sharing 
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Build digital democracy
Open sharing of data that are collected with smart devices would empower citizens 

and create jobs, say Dirk Helbing and Evangelos Pournaras.

Fridges, coffee machines, toothbrushes, 
phones and smart devices are all now 
equipped with communicating sensors. 

In ten years, 150 billion ‘things’ will connect 
with each other and with billions of people. 
The ‘Internet of Things’ will generate data vol-
umes that double every 12 hours rather than 
every 12 months, as is the case now. 

Blinded by information, we need ‘digital 
sunglasses’. Whoever builds the filters to 
monetize this information determines what 
we see — Google and Facebook, for exam-
ple. Many choices that people consider their 
own are already determined by algorithms. 
Such remote control weakens responsible, 
self-determined decision-making and thus 
society too.

The European Court of Justice’s ruling 
on 6 October that countries and companies 
must comply with European data-protec-
tion laws when transferring data outside the 
European Union demonstrates that a new 
digital paradigm is overdue. To ensure that 
no government, company or person with 
sole control of digital filters can manipulate 

our decisions, we need information sys-
tems that are transparent, trustworthy and 
user-controlled. Each of us must be able to 
choose, modify and build our own tools for 
winnowing information. 

With this in mind, our research team at 
the Swiss Federal Institute of Technology in 
Zurich (ETH Zurich), alongside international 
partners, has started to create a distributed, 
privacy-preserving ‘digital nervous system’ 
called Nervousnet. Nervousnet uses the sen-
sor networks that make up the Internet of 
Things, including those in smartphones, to 
measure the world around us and to build a 
collective ‘data commons’. The many chal-
lenges ahead will be best solved using an 
open, participatory platform, an approach 
that has proved successful for projects such 
as Wikipedia and the open-source operating 
system Linux. 

A WISE KING?
The science of human decision-making is 
far from understood. Yet our habits, rou-
tines and social interactions are surprisingly 

predictable. Our behaviour is increasingly 
steered by personalized advertisements and 
search results, recommendation systems 
and emotion-tracking technologies. Thou-
sands of pieces of metadata have been col-
lected about every one of us (see go.nature.
com/stoqsu). Companies and governments 
can increasingly manipulate our decisions, 
behaviour and feelings1. 

Many policymakers believe that personal 
data may be used to ‘nudge’ people to make 
healthier and environmentally friendly 
decisions. Yet the same technology may 
also promote nationalism, fuel hate against 
minorities or skew election outcomes2 if eth-
ical scrutiny, transparency and democratic 
control are lacking — as they are in most 
private companies and institutions that use 
‘big data’. The combination of nudging with 
big data about everyone’s behaviour, feelings 
and interests (‘big nudging’, if you will) could 
eventually create close to totalitarian power. 

Countries have long experimented with 
using data to run their societies. In the 1970s, 
Chilean President Salvador Allende created 

Many choices that people consider their own are already determined by algorithms.
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DEMOCRATIZATION OF 
MOBILE COMPUTING &  
INTERNET OF THINGS 

•  Scalability 
•  Participation: computational 

resources, sharing economies 

•  Services as public good by 
citizens for citizens 

•  Privacy-by-design 

Decentralization 
 

•  Informational self-determination 

•  Autonomy 
•  Fairness 
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Data Sharing 

Data Analytics 

Optimization & Learning 
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Data Sharing 
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Summarization 
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Implementation 

Summarization - Clustering 

Unsupervised learning 
Several implementation algorithms 

Customizable – number of clusters 
Algorithmic: Fully-automated, data-driven 

Empirical: Citizens’ preferences, semi-automated 
Fixed: Manual selection 

Survey questions 
Privacy preferences 

Datasets 

Nervousnet 
154 participants 
several sensors 

4 days 

ECBT - Smart Grid 
6435 participants 

1 sensor 
1 year 

 

Survey answers è summarization range 
My household may decide to be more aware of the 
amount of electricity used by appliances we own or buy.  
 Pournaras et al. EPJ Data Science  ( 2016)  5:14 Page 8 of 24

Table 2 An outline of the experiments performed with each dataset

Measurements & variables ECBT Nervousnet

Privacy ! !
Accuracy ! !
Costs & Rewards ! X
Epoch length daily & weekly daily
Summarization level fixed, empirical & algorithmic fixed & algorithmic
Number of citizens ! !
Several sensor types X !
Analytics summation average

Figure 3 Fixed summarization values and the
corresponding number of clusters for daily and
weekly epochs.

Figure  illustrates the scheme with fixed summarization levels. The number of clusters
vs. the summarization values are computed with Equation ().

The empirical selection of summarization levels is performed using the answers of sur-
vey questions from the ECBT project. However, the proposed model is generic and can
be applied beyond the ECBT project. The goal of engaging these empirical data is to show
how the proposed model can be applied in reality rather than studying the actual privacy
profiles of citizens. The latter requires highly contextualized data that is challenging to
acquire. This expansion is beyond the scope of this paper and is subject of future work.
Questions that indicate desire, belief, or intention for a participation in the ECBT project
are correlated to the selected level of summarization. The questions have z =  possible
answers with ‘’ indicating a strong agreement and ‘’ a strong disagreement. Different
questions are answered by residential consumers and small-medium enterprises. For the
residential consumers, the following question is considered:

Question  My household may decide to be more aware of the amount of electricity used
by appliances we own or buy.

A non-linear exponential half-life regression model approximatesf the Ps(αi,e) from the
probability density function of the answers:

Ps(αi,e) = a + b


αi,e
c

, ()
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Privacy vs. Accuracy – Smart Grid 

Fixed summarization levels 
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Privacy-preservation – Smart Grid 

Algorithmic summarization levels 
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Privacy vs. Accuracy – Nervousnet 

Fixed summarization levels 
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Privacy-preservation – Nervousnet 

Algorithmic summarization levels 
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Social Norms & Human Decision-making 

Model decision-making/privacy-perception in 
data sharing 

Novel mixed-mode social 
experiment at 

ETH Decision Science Lab 

How (monetary) rewards steer human 
decision-making in information sharing? 
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Experiment 

>100 users, >3 months 

Real monetary 
incentives 

Adherence to 
ethical & 
experimental 
protocols 
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Competing summarization algorithms! 
 

http://www.nervousnet.ethz.ch/hackathon/ 
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Data Analytics 
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Research Question 

How to perform decentralized, dynamic & privacy-preserving data analytics  
over Internet of Things in a cost-effective & resilient way? 

Collective P2P computations 
+ 

crowd  resources 

Self-correcting operations 
high accuracy 

Real-time continuous 
adjustments of computations Aggregation functions 

SUM, AVG, STDEV, MAX, MIN 

Highly entropic 
sensor streams 

Communication, memory 
vs. 

accuracy 

DEMOCRATIZATION OF 
DATA ANALYTICS 

Data summarization 
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Focus 

∑DIA
dias-net.org 
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Internet of Things  
data suppliers 

Raw sensor data 
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Decentralized Data Management 

overall error 

DIAS error 

Internet of Things  
data consumers 

aggregation data summarized data 

summarization error 

Summarization unit 

DIAS network 
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DIAS – How it works!  

di aj ai dj 

Peer Sampling Service 
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Visualization 

Epoch 14 

Epoch 15 

Epoch 18 

Epoch 19 

Epoch 23 
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Experimental Evaluation 

3000 nodes – Extreme scenario: all modes with a data suppliers & consumers  

Real-world data: Electricity Customer Behavioral Trial 

Implemented with the Protopeer distributed prototyping toolkit 
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Dynamic Network Settings 
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Optimization & Learning 
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Smart Grids & Smart Cities 

Local:   make a shower, cook, laundry, charge EV 
Global: prevent a blackout,  
             minimize production costs,  
             maximize use of renewables 

Local:  station to pick or leave a bicycle 
Global: prevent overload/underload of bicycle stations 
             minimize manual bicycle relocations 
             minimize operational costs  
             minimize investment costs    

A computational design paradigm for truly decentralized 
participatory sharing economies? 
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epos-net.org 



| | www.evangelospournaras.com March 2017 Dr. Evangelos Pournaras 28 

Participation Model 

Planning alternative operations: possible plans 
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Technology 
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Computational Model 

(+) 

Brute Force 

Complexity = # of possible plans# of devices 
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Decentralized Algorithm 

1. Bottom-up phase: form candidate solutions 

Selection function: e.g. Minimum variance, match target signal 

1.  (Self-)organization in a tree topology 
2.   bottom-up aggregation &  decision-making 

Local information 
+ 

 aggregate information (branch/tree) 

2. Top-down phase: back-propagate effective solutions  
3. Repeat to learn 

Monotonously improving/learning solutions 
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Experimental Evaluation 

(a) iteration 2 (b) iteration 3 (c) iteration 4 (d) iteration 5 (e) iteration 6 (f) iteration 7 (g) iteration 8 (h) iteration 9

(i) iteration 2 (j) iteration 12 (k) iteration 22 (l) iteration 32 (m) iteration 42 (n) iteration 52 (o) iteration 62 (p) iteration 72

Fig. 10: (a)-(h) I-EPOS vs. (i)-(p) COHDA. Network snapshots showing the agents (in black) changing their selection and
agents (in white) that do not change their selection.

2 4 6 8 10 12
hour of the day

300
400
500
600
700
800
900

de
m

an
d

(k
W

)

Original
I-EPOS

(a) PNW-MORNING.

12 14 16 18 20 22
hour of the day

300

400

500

600

700

800

de
m

an
d

(k
W

)

Original
I-EPOS

(b) PNW-EVENING.

Fig. 11: Power peak-shaving by I-EPOS on the PNW dataset.
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Fig. 12: Trade-off between peak demand reduction
and average demand shift in the selected plans
� 2 {0, 0.5, . . . , 4, 5, 6, 100} after t = 60 iterations for
the PNW datasets.

algorithm. The timeslot is chosen from 8:00am to 10:00am.
All historic unique trips a user did in the defined timeslot of
a week day are considered as the possible plans for that day.
The local cost of each plan is defined by the likelihood the
user does not make the trip instructed in the plan. For instance,
if three plans are chosen in 4, 5 and 1 days of the measured
time period respectively, the local cost for these plans is 0.6,
0.5 and 0.9 respectively.

Figure 13a illustrates the load-balancing of the stations

using I-EPOS without varying the local cost of the plans after
15 iterations. I-EPOS reduces the variance from roughly 230
to 0.58. This indicates a significant potential to reduce the
number of manual bike relocations. However, recommenda-
tions may not be followed if the user is unlikely to choose a
certain trip, i.e. a trip with high local cost. Figure 13b shows
the trade-off between global and local cost controlled via the
� parameter after 30 iterations. A � = 0 is the one extreme in
which the local cost is not considered, in contrast to � = 100
that results in global response equivalent to the original data.
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Fig. 13: I-EPOS performance for the bicycle sharing dataset.

Results show that making plan selection with the average
likelihood of the selected plan reduced in half is followed by
a reduction of the variance by a factor of more than 100.

V. I-EPOS AS A PARADIGMATIC ARTIFACT

Motivated by the tremendous potential that solutions to
decentralized combinatorial optimization problems can have in
building more sustainable and resilient digital societies [27],
as shown in the application scenarios of participatory sharing
economies in Section IV-B, authors move a step forward and
contribute a paradigmatic software implementation of I-EPOS
and other supporting software to the broader relevant research

1000 users 

Time: 08:00-10:00 

Plan generation using historic trips 

13 plans, generated by load-shifting 

Time: 11:00-23:00 1000 households 
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(i) iteration 2 (j) iteration 12 (k) iteration 22 (l) iteration 32 (m) iteration 42 (n) iteration 52 (o) iteration 62 (p) iteration 72

Fig. 10: (a)-(h) I-EPOS vs. (i)-(p) COHDA. Network snapshots showing the agents (in black) changing their selection and
agents (in white) that do not change their selection.
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algorithm. The timeslot is chosen from 8:00am to 10:00am.
All historic unique trips a user did in the defined timeslot of
a week day are considered as the possible plans for that day.
The local cost of each plan is defined by the likelihood the
user does not make the trip instructed in the plan. For instance,
if three plans are chosen in 4, 5 and 1 days of the measured
time period respectively, the local cost for these plans is 0.6,
0.5 and 0.9 respectively.

Figure 13a illustrates the load-balancing of the stations

using I-EPOS without varying the local cost of the plans after
15 iterations. I-EPOS reduces the variance from roughly 230
to 0.58. This indicates a significant potential to reduce the
number of manual bike relocations. However, recommenda-
tions may not be followed if the user is unlikely to choose a
certain trip, i.e. a trip with high local cost. Figure 13b shows
the trade-off between global and local cost controlled via the
� parameter after 30 iterations. A � = 0 is the one extreme in
which the local cost is not considered, in contrast to � = 100
that results in global response equivalent to the original data.
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Fig. 13: I-EPOS performance for the bicycle sharing dataset.

Results show that making plan selection with the average
likelihood of the selected plan reduced in half is followed by
a reduction of the variance by a factor of more than 100.

V. I-EPOS AS A PARADIGMATIC ARTIFACT

Motivated by the tremendous potential that solutions to
decentralized combinatorial optimization problems can have in
building more sustainable and resilient digital societies [27],
as shown in the application scenarios of participatory sharing
economies in Section IV-B, authors move a step forward and
contribute a paradigmatic software implementation of I-EPOS
and other supporting software to the broader relevant research
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Comparison with Related Work 

Computational cost Communication cost 

Superior performance even when compared to systems  
storing complete information & performing brute-force operations 



| | www.evangelospournaras.com March 2017 Dr. Evangelos Pournaras 34 

Future Work & Research Direction 

Living lab – Mobile social experiments, hackathons, smart city applications 

Community-based cloud infrastructure 
personal data stores & public good services 

Adaptive decentralized resource allocation in clouds with EPOS 

Fully decentralized deep learning algorithms 
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an epoch. The information reveal within the raw data and the summarized data can be
measured with the entropy of Shannon’s information theory []:

H(Di,e) = –
ki,e∑

j=
pi,e,j log pi,e,j, ()

where the input data Di,e = (di,e,t)T
t= can be either the raw data such that Di,e ≡ Ri,e, or the

summarized data such that Di,e ≡ Si,e. The probability pi,e,j is measured as follows:

pi,e,j = 
T

T∑

t=
nt , nt =

⎧
⎨

⎩
 if ci,e,j = di,e,t ,
 if ci,e,j ≠ di,e,t ,

()

where nt is the number of occurrences of ci,e,j in the data Di,e. Finally, diversity is another
notion of information reveal that measures the rate of changes in sensor values occurring
within an epoch. It is measured as follows:

βi,e = 
T – 

T–∑

t=
mt , mt =

⎧
⎨

⎩
 if di,e,t = di,e,t+,
 if di,e,t ≠ di,e,t+,

()

where mt counts whether a change occurs between two consecutive time periods di,e,t and
di,e,t+. The information loss between raw data and summarized data can be measured with
the relative approximation error as follows:

ϵi,e,t = |ri,e,t – si,e,t|
|ri,e,t|

()

The data aggregators perform analytics using the summarization data instead of the
raw data. This paper studies aggregation functions as a common analytics operation, e.g.,
summation, average etc. An aggregation function provides collective information about
the individual measurements performed by citizens. The main challenge for data aggre-
gators is if the aggregation functions can be accurately computed using the summarization
data instead of the raw data. The error of an aggregation function, such as the summation,
is computed as follows:

εe,t = |∑n
i= ri,e,t – ∑n

i= si,e,t|
|∑n

i= ri,e,t|
, ()

where n is the number of participating citizens. To distinguish the two errors, the ϵi,e,t
computed by each agent i is referred to as local error, in contrast to the global error εe,t
computed by data aggregators. Given that the two metrics are relative, the global error
can be compared to the average local error among the citizens. The latter is measured as
follows:

ϵe,t = 
n

n∑

i=
ϵi,e,t ()

Data aggregators incentivize citizens to share data as follows. Assume that data aggre-
gators have a budget γe at epoch e that can use to incentivize and reward citizens to share
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()

where mt counts whether a change occurs between two consecutive time periods di,e,t and
di,e,t+. The information loss between raw data and summarized data can be measured with
the relative approximation error as follows:

ϵi,e,t = |ri,e,t – si,e,t|
|ri,e,t|

()

The data aggregators perform analytics using the summarization data instead of the
raw data. This paper studies aggregation functions as a common analytics operation, e.g.,
summation, average etc. An aggregation function provides collective information about
the individual measurements performed by citizens. The main challenge for data aggre-
gators is if the aggregation functions can be accurately computed using the summarization
data instead of the raw data. The error of an aggregation function, such as the summation,
is computed as follows:

εe,t = |∑n
i= ri,e,t – ∑n

i= si,e,t|
|∑n

i= ri,e,t|
, ()

where n is the number of participating citizens. To distinguish the two errors, the ϵi,e,t
computed by each agent i is referred to as local error, in contrast to the global error εe,t
computed by data aggregators. Given that the two metrics are relative, the global error
can be compared to the average local error among the citizens. The latter is measured as
follows:

ϵe,t = 
n

n∑

i=
ϵi,e,t ()

Data aggregators incentivize citizens to share data as follows. Assume that data aggre-
gators have a budget γe at epoch e that can use to incentivize and reward citizens to share

Average local error 

Pournaras et al. EPJ Data Science  ( 2016)  5:14 Page 5 of 24

an epoch. The information reveal within the raw data and the summarized data can be
measured with the entropy of Shannon’s information theory []:

H(Di,e) = –
ki,e∑

j=
pi,e,j log pi,e,j, ()

where the input data Di,e = (di,e,t)T
t= can be either the raw data such that Di,e ≡ Ri,e, or the

summarized data such that Di,e ≡ Si,e. The probability pi,e,j is measured as follows:

pi,e,j = 
T

T∑

t=
nt , nt =

⎧
⎨

⎩
 if ci,e,j = di,e,t ,
 if ci,e,j ≠ di,e,t ,
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()

where nt is the number of occurrences of ci,e,j in the data Di,e. Finally, diversity is another
notion of information reveal that measures the rate of changes in sensor values occurring
within an epoch. It is measured as follows:

βi,e = 
T – 

T–∑

t=
mt , mt =

⎧
⎨

⎩
 if di,e,t = di,e,t+,
 if di,e,t ≠ di,e,t+,
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data. The budget cannot be equally divided among citizens as each citizen may select a
different summarization level. In other words, the average reward per citizen should be
scaled up or down according to the summarization level selected. This can be achieved
with a probability density function Pr(αi,e) to incentivize citizens to share more or less
data. Given a constant budget γe, the Pr(αi,e) is continuously updated as follows: When
the global error is very high, lower summarization is required and therefore higher re-
wards can be distributed to low summarization values. In contrast, when a higher global
error can be tolerated, higher summarization can be tolerated as well, resulting in a rela-
tive increment of the rewards to high summarization values. The market equilibrium can
be further studied with mechanism design and game theoretic approaches [].

The rewards received by each citizen i depends on their selection of a summarization
level. The summarization level is a technical concept that citizens may not easily perceive
so that a meaningful selection is performed for them. This barrier may become appar-
ent when citizens use and interact with mobile phones to generate data. In such cases
citizens can easier select a participation level determined within a range [, z] of z ≤ ki,e
discrete options. This approach is documented in related work [, ] and is the practice
of segmented control recommended in the software engineering of mobile applications.a
Option  corresponds to high rewards but low privacy-preservation, whereas, option z
corresponds to low rewards but high privacy-preservation. Selections can be made offline
via survey questions or online via interactions with the software agent [, ]. Selections
made are mapped to the range of summarization values determined by the ki,e possible
summarization values.b A probability density function Ps(αi,e) can be constructed that
measures the probability of a user to have a certain summarization level αi,e.

Given the total number of citizens n, the total budget for rewards γe at epoch e, the
probability density function Pr() for the distribution of rewards and the probability den-
sity function Ps() for the distribution of citizens’ selections of a summarization level, the
rewards of a citizen i with summarization αi,e at epoch e are measured as follows:

γi,e = γe ∗ Pr(αi,e)
n ∗ Ps(αi,e) . ()

The following section illustrates how this model can be empirically used and evaluated
with real-world data.

3 Experimental methodology
The proposed self-regulatory information sharing system is evaluated empirically using
data from two social sensing projects:

• The Electricity Customer Behavior Trial - ECBT : This is a Smart Grid projectc that
studies the impact on electricity consumption of residential and enterprise consumers
in Ireland. The project ran during the period - with data from ,
participating consumers. Consumption data are collected from smart meters every 
minutes. Data are pre-processed to daily and weekly epochs and cleaned up to include
.% of the original data that correspond to  weeks with users having at least %
of data availability. A .% of missing values are interpolated by the earliest meter
read and first following one. Summarization is performed in each daily or weekly
epoch.
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Table 1 An overview of the mathematical symbols

Symbol Interpretation

i An agent index
e An epoch index
t A time index within an epoch
T Epoch duration
Ri,e Sequence of raw data
ri,e,t A record of raw data
Si,e Sequence of summarized data
si,e,t A record of summarized data
fs() Summarization function
j An index for a possible summarization value
ci,e,j A possible summarization value
ki,e The number of possible summarization values
l Number of epochs
αi,e Summarization metric
Di,e Sequence of raw or summarization data
H(Di,e) Entropy
pi,e,j Probability of a possible value occurring in an epoch
nt Occurrence or not of possible value at time t
βi,e Diversity
mt Change or not between two consecutive time periods t and t + 1
ϵi,e,t Local error
εi,et Global error
n Number of participating citizens
ϵe,t Average local error among citizens
γe Total rewards that data aggregators are willing to provide
Pr() Probability density function for rewards
z Number of discrete participation levels
Ps() Probability density function for summarization
γi,e Rewards provided to agent i

Figure 2 Periodic data summarization at two different granularity levels.

The length of the epoch determines the data that the citizen protects. For example,
a daily summarization protects the privacy of data within each day but not across days.
The latter would require weekly or monthly summarization in the context of this work.
The summarization αi,e of an agent i at an epoch e can be measured as follows:

αi,e =  – ki,e
T , ()

where ki,e is the number of possible discrete values used to summarize the raw data di-
vided by the total number of measurements that can be observed within the duration of
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