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Threats & Challenges 

Data Sharing 

Data Analytics 

Optimization & Learning 

Centralized Design 
Beyond scalability 
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Build digital democracy
Open sharing of data that are collected with smart devices would empower citizens 

and create jobs, say Dirk Helbing and Evangelos Pournaras.

Fridges, coffee machines, toothbrushes, 
phones and smart devices are all now 
equipped with communicating sensors. 

In ten years, 150 billion ‘things’ will connect 
with each other and with billions of people. 
The ‘Internet of Things’ will generate data vol-
umes that double every 12 hours rather than 
every 12 months, as is the case now. 

Blinded by information, we need ‘digital 
sunglasses’. Whoever builds the filters to 
monetize this information determines what 
we see — Google and Facebook, for exam-
ple. Many choices that people consider their 
own are already determined by algorithms. 
Such remote control weakens responsible, 
self-determined decision-making and thus 
society too.

The European Court of Justice’s ruling 
on 6 October that countries and companies 
must comply with European data-protec-
tion laws when transferring data outside the 
European Union demonstrates that a new 
digital paradigm is overdue. To ensure that 
no government, company or person with 
sole control of digital filters can manipulate 

our decisions, we need information sys-
tems that are transparent, trustworthy and 
user-controlled. Each of us must be able to 
choose, modify and build our own tools for 
winnowing information. 

With this in mind, our research team at 
the Swiss Federal Institute of Technology in 
Zurich (ETH Zurich), alongside international 
partners, has started to create a distributed, 
privacy-preserving ‘digital nervous system’ 
called Nervousnet. Nervousnet uses the sen-
sor networks that make up the Internet of 
Things, including those in smartphones, to 
measure the world around us and to build a 
collective ‘data commons’. The many chal-
lenges ahead will be best solved using an 
open, participatory platform, an approach 
that has proved successful for projects such 
as Wikipedia and the open-source operating 
system Linux. 

A WISE KING?
The science of human decision-making is 
far from understood. Yet our habits, rou-
tines and social interactions are surprisingly 

predictable. Our behaviour is increasingly 
steered by personalized advertisements and 
search results, recommendation systems 
and emotion-tracking technologies. Thou-
sands of pieces of metadata have been col-
lected about every one of us (see go.nature.
com/stoqsu). Companies and governments 
can increasingly manipulate our decisions, 
behaviour and feelings1. 

Many policymakers believe that personal 
data may be used to ‘nudge’ people to make 
healthier and environmentally friendly 
decisions. Yet the same technology may 
also promote nationalism, fuel hate against 
minorities or skew election outcomes2 if eth-
ical scrutiny, transparency and democratic 
control are lacking — as they are in most 
private companies and institutions that use 
‘big data’. The combination of nudging with 
big data about everyone’s behaviour, feelings 
and interests (‘big nudging’, if you will) could 
eventually create close to totalitarian power. 

Countries have long experimented with 
using data to run their societies. In the 1970s, 
Chilean President Salvador Allende created 

Many choices that people consider their own are already determined by algorithms.
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DEMOCRATIZATION OF 
INTERNET OF THINGS 

•  Scalability 
•  Participation: computational 

resources, sharing economies 

•  Services as public good by 
citizens for citizens 

•  Privacy-by-design 

Decentralization 
 

•  Informational self-determination 

•  Autonomy 
•  Fairness 



| | www.evangelospournaras.com May 2017 Dr. Evangelos Pournaras 5 

Data Sharing 

Data Analytics 

Optimization & Learning 
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Optimization & Learning 
Towards Bottom-up Decentralized Sharing Economies running over 
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Smart Grids & Smart Cities 

Do management and regulation with centralized big data 
and IoT technologies oppose the bottom-up nature of 
sharing economies? 
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Smart Grids & Smart Cities 

Local:   make a shower, cook, laundry, charge EV 
Global: prevent a blackout,  
             minimize production costs,  
             maximize use of renewables 

Local:  station to pick or leave a bicycle 
Global: prevent overload/underload of bicycle stations 
             minimize manual bicycle relocations 
             minimize operational costs  
             minimize investment costs    

A computational design paradigm for truly decentralized 
participatory sharing economies? 



| | www.evangelospournaras.com May 2017 Dr. Evangelos Pournaras 10 

epos-net.org 
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Participation Model 

Planning alternative operations: possible plans 
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Technology 



| | www.evangelospournaras.com May 2017 Dr. Evangelos Pournaras 13 

Computational Model 

(+) 

Brute Force 

Complexity = # of possible plans# of devices 
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Decentralized Algorithm 

1. Bottom-up phase: form candidate solutions 

Selection function: e.g. Minimum variance, match target signal 

1.  (Self-)organization in a tree topology 
2.   bottom-up aggregation &  decision-making 

Local information 
+ 

 aggregate information (branch/tree) 

2. Top-down phase: back-propagate effective solutions  
3. Repeat to learn 

Monotonously improving/learning solutions 
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Experimental Evaluation 

(a) iteration 2 (b) iteration 3 (c) iteration 4 (d) iteration 5 (e) iteration 6 (f) iteration 7 (g) iteration 8 (h) iteration 9

(i) iteration 2 (j) iteration 12 (k) iteration 22 (l) iteration 32 (m) iteration 42 (n) iteration 52 (o) iteration 62 (p) iteration 72

Fig. 10: (a)-(h) I-EPOS vs. (i)-(p) COHDA. Network snapshots showing the agents (in black) changing their selection and
agents (in white) that do not change their selection.
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Fig. 11: Power peak-shaving by I-EPOS on the PNW dataset.

0 5 10 15 20 25 30
average shift (min)

780
800
820
840
860
880
900
920
940

pe
ak

de
m

an
d

(k
W

)

(a) PNW-MORNING

0 5 10 15 20 25 30
average shift (min)

700

720

740

760

780

800

820

pe
ak

de
m

an
d

(k
W

)

(b) PNW-EVENING

Fig. 12: Trade-off between peak demand reduction
and average demand shift in the selected plans
� 2 {0, 0.5, . . . , 4, 5, 6, 100} after t = 60 iterations for
the PNW datasets.

algorithm. The timeslot is chosen from 8:00am to 10:00am.
All historic unique trips a user did in the defined timeslot of
a week day are considered as the possible plans for that day.
The local cost of each plan is defined by the likelihood the
user does not make the trip instructed in the plan. For instance,
if three plans are chosen in 4, 5 and 1 days of the measured
time period respectively, the local cost for these plans is 0.6,
0.5 and 0.9 respectively.

Figure 13a illustrates the load-balancing of the stations

using I-EPOS without varying the local cost of the plans after
15 iterations. I-EPOS reduces the variance from roughly 230
to 0.58. This indicates a significant potential to reduce the
number of manual bike relocations. However, recommenda-
tions may not be followed if the user is unlikely to choose a
certain trip, i.e. a trip with high local cost. Figure 13b shows
the trade-off between global and local cost controlled via the
� parameter after 30 iterations. A � = 0 is the one extreme in
which the local cost is not considered, in contrast to � = 100
that results in global response equivalent to the original data.
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(a) Original bicycle allocation vs.
I-EPOS global response.
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(b) Trade-off between variance and av-
erage likelihood of the selected plans
� 2 {0, 1, . . . , 10, 100} after t = 30

iterations.

Fig. 13: I-EPOS performance for the bicycle sharing dataset.

Results show that making plan selection with the average
likelihood of the selected plan reduced in half is followed by
a reduction of the variance by a factor of more than 100.

V. I-EPOS AS A PARADIGMATIC ARTIFACT

Motivated by the tremendous potential that solutions to
decentralized combinatorial optimization problems can have in
building more sustainable and resilient digital societies [27],
as shown in the application scenarios of participatory sharing
economies in Section IV-B, authors move a step forward and
contribute a paradigmatic software implementation of I-EPOS
and other supporting software to the broader relevant research

1000 users 

Time: 08:00-10:00 

Plan generation using historic trips 

13 plans, generated by load-shifting 
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a week day are considered as the possible plans for that day.
The local cost of each plan is defined by the likelihood the
user does not make the trip instructed in the plan. For instance,
if three plans are chosen in 4, 5 and 1 days of the measured
time period respectively, the local cost for these plans is 0.6,
0.5 and 0.9 respectively.

Figure 13a illustrates the load-balancing of the stations

using I-EPOS without varying the local cost of the plans after
15 iterations. I-EPOS reduces the variance from roughly 230
to 0.58. This indicates a significant potential to reduce the
number of manual bike relocations. However, recommenda-
tions may not be followed if the user is unlikely to choose a
certain trip, i.e. a trip with high local cost. Figure 13b shows
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� parameter after 30 iterations. A � = 0 is the one extreme in
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Results show that making plan selection with the average
likelihood of the selected plan reduced in half is followed by
a reduction of the variance by a factor of more than 100.

V. I-EPOS AS A PARADIGMATIC ARTIFACT

Motivated by the tremendous potential that solutions to
decentralized combinatorial optimization problems can have in
building more sustainable and resilient digital societies [27],
as shown in the application scenarios of participatory sharing
economies in Section IV-B, authors move a step forward and
contribute a paradigmatic software implementation of I-EPOS
and other supporting software to the broader relevant research



| | www.evangelospournaras.com May 2017 Dr. Evangelos Pournaras 16 

Comparison with Related Work 

Computational cost Communication cost 

Superior performance even when compared to systems  
storing complete information & performing brute-force operations 
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Design alignment of sharing economies 
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Conclusions and Vision 

I-EPOS: Striking performance against state of the art 

Grand challenge: decentralized combinatorial optimization made feasible 

Bottom-up nature of participatory movements and initiatives  
 

with 
truly decentralized online management and regulation mechanisms 
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Questions? 
ETH Zurich 

Evangelos Pournaras 

epournaras@ethz.ch 

www.evangelospournaras.com 

epos-net.org dias-net.org nervousnet.info 

www.sobigdata.eu www.asset-consumerism.eu 


