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Abstract

Pervasive technologies in socio-technical domains such
as smart cities and smart grids question the values required
for designing sustainable and participatory digital societies.
Privacy-preservation, scalability, fairness, autonomy, and
social-welfare are vital for democratic sharing economies
and usually require computing systems designed to operate
in a decentralized fashion. This paper examines sonification
as the means for the general public to conceive decentralized
systems that are too complex or non-intuitive for the main-
stream thinking and general perception in society. We sonify
two complex datasets that are generated by a prototyped de-
centralized system of computational intelligence operating
with real-world data. The applied sonification methodolo-
gies are largely ad-hoc and address a series of concerns that
are of both artistic and scientific merit. We create informa-
tive, effective and aesthetically meaningful soundworks as
the means to probe and speculate complex, even unknown
or unidentified, content. In this particular case, the sonifi-
cation represents the constitutional narrative of two complex
application scenarios of decentralized systems towards their
equilibria.
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Introduction

Following the ‘datalogical turn’ of the last few decades
[Kitchin, 2014; Chandler, 2015; Clough et al., 2015] several
types of data aesthetics have been well laid out, including ‘di-
agram aesthetics’ [Heinrich, 2016], visualization/material-
ization practices [Bjørnsten, 2016], paradigmatic approaches
to music composition [Koutsomichalis, 2016a] and database

aesthetics in general [Vesna, 2007]. Far from being a shift
specific to visual culture, the above turn has dramatically
affected music listening practices [Koutsomichalis, 2016b].
Sonification and audification have been well standardized in
both artistic and techno-scientific milieux as plausible ways
to aesthetisize data [Dombois and Eckel, 2011; Walker and
Nees, 2011]. Approaches of a purely technical/scientific
scope have been accounted for in the proceedings of the vari-
ous International Conferences for Auditory Display1 that oc-
cur annually, with a few exceptions, since 1994. There are
numerous diverse, even disparate, trends to sonification and
while there are numerous examples of a purely scientific or
artistic merit, real life practice often transcends classification
and it is not rare at all that scientific and artistic mileux are
simultaneously relevant to a project [Prudence, 2014; Arse-
nault, 2002; Wilson, 2002]. Desoundralization is a charac-
teristic example of such a case, since our original intention
is to both compose ‘intriguing’, in purely subjective terms,
sound-art, as well as to experiment with new means/tactics
that help us better scrutinize, perceive, understand and even-
tually present to an audience large-scale decentralized sys-
tems applied in contemporary social-technical ecosystems of
power systems and urban environments.

Desoundralization concerns the sonification of rather
complex data that exhibit decentralized computational intel-
ligence, i.e. localized data that are an actual result of collec-
tive decision-making and peer-to-peer interactions between
autonomous agents. In this context, and at least as far as
our particular approach is concerned, sonifying such systems
proves to be a largely ad-hoc process that brings forth a series
of questions that are simultaneously of artistic and scientific
merit: how can we sonify systems of decentralized compu-

1Available at https://smartech.gatech.edu/handle/
1853/49750 (last accessed: November 2016)
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tational intelligence that are too complex or non-intuitive to
be approached with mainstream thinking and ordinary logic,
so that they become ’meaningful’ for both specialists and
the general public? what structural qualities of the system
under scrutiny may be revealed in this way? how can we
probe data-sets and their embedded infrastructure when the
latter is largely unknown or too complex/large to be known?
is it possible to demonstrate alternative decentralized design
patterns for computational intelligence in data-intensive sys-
tems by means of sonification? how can we aestheticize or
foreground those attributes that are relevant to intelligent de-
centralized systems, e.g. robustness, scalability, privacy-by-
design, fault tolerance, fairness and social welfare?

Desoundralization is an ongoing, collaborative and
highly-interdisciplinary endeavor to address the above ques-
tions. Our approach is pragmatic and largely empirical. We
zero in on how we can embody the above questions as well
as our particular responses into the actual sonic outcomes so
that they are experienced in a phenomenological fashion. In
this paper we account for the first outcomes of the project,
namely for the first two studies in decentralized computa-
tional intelligence, and we elaborate on our methodologi-
cal traits. In particular, we discuss the ways in which we
sonify two distinct datasets produced by I-EPOS, a fully de-
centralized combinatorial optimization system [Pilgerstorfer
and Pournaras, 2017]. I-EPOS is applied in two domains
of participatory sharing economies: (i) energy management
for a more sustainable energy usage in a smart grid and (ii)
bicycle sharing for load-balancing the bicycle stations of a
smart city. The sonification process uses as input the two
distinguished datasets produced by the same algorithm for
each of the two application domains.

Decentralized Computational Intelligence

Several data-intensive techno-socio-economic systems
are challenged by collective decision-making outcomes of
the actors they consist of. For example, energy con-
sumers choose the level of energy consumption and the
moments when they consume energy from the power
grid. Their collective choices may result in power peaks
that can cause catastrophic blackouts or high overall en-
ergy prices [Pournaras et al., 2014a]. Similarly, sharing
economies emerging in the context of smart cities such as
bicycle or other vehicle sharing [Midgley, 2011], require co-
ordinated decision-making so that the availability of bicy-
cles in stations meets a varied demand. In this way, utility
companies and operators do not need to perform expensive
manual relocation of bicycles among the stations. In such
large-scale, distributed in nature, decision-making problems
the aggregate result of local autonomous choices result in
system-wide outcomes that influence the overall reliability
and sustainability of the environment in which citizens reside
and act. Given that citizens’ choices are made among differ-

ent feasible options, or options with a varied cost for each cit-
izen, the computational problem is combinatorial: the num-
ber of possible global outcomes is exponential as kn, where k
is the number of options of each citizen and n is the number
of citizens participating. This computational complexity can
even challenge Big Data infrastructures running MapReduce
computational models [Lin et al., 2016].

Combinatorial optimization in techno-socio-economic do-
mains such as the aforementioned one is challenging and
not straightforward to apply. Such domains entail compli-
cations that go beyond technical ones. Big data infrastruc-
tures often require the collection of massive personal data
for parallel processing in large, energy-intensive, and ex-
pensive data centers. This approach raises several issues of
trust, privacy-intrusion, surveillance, discriminatory actions
and undermining of autonomy [Hajian et al., 2015; Helbing
and Pournaras, 2015]. An alternative approach is to perform
a fully decentralized combinatorial optimization using col-
lective intelligence deployed over crowdsourced Internet of
Things devices ran by citizens. I-EPOS, the Iterative Eco-
nomic Planning and Optimized Selections [Pilgerstorfer and
Pournaras, 2017] is an example of such an alternative decen-
tralized system. I-EPOS builds upon the earlier EPOS op-
timization mechanism [Pournaras et al., 2014a,b] and adds
on a fully decentralized back propagation learning capabil-
ity. Software agents of I-EPOS run in citizens’ devices struc-
tured in self-organized [Pournaras et al., 2014c] tree topolo-
gies over which they perform a bottom-up and top-down net-
worked exchange of information to locally perform an in-
formed choice for a resource allocation plan to execute. This
optimum plan may represent the schedule of energy con-
sumption of a household appliance that minimizes power
peaks or maximizes the stations with available bicycles to
pick up. Selection is made using a fitness function that re-
ceives as input the plans of the agents and the aggregate
agent selections made in the bottom part of the tree topology.
Figure 1 visualizes the tree topology and the plan selections
made at the first iteration of an I-EPOS execution.

For Desoundralization we zeroed in on the following local
and global output data of I-EPOS:

Selected plans-local The globally optimum plans locally
selected by the I-EPOS agents at every iteration.

Standard deviation-global This is the global evaluation
criterion at every iteration and it is used as a lo-
cal minimization criterion in the fitness functions
of the agents as well.

Aggregate plans-global The aggregate, computed by
summation, of all selected plans at each iteration.

Incentive signal-global The computed cost signal at ev-
ery iteration used in the fitness function of the op-
timization process.
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Figure 1. EPOS agents performing collective decision mak-
ing over a self-organized tree topology for the optimization
of the aggregate energy demand. Agent locally generate four
energy demand plans and cooperatively make a selection.

Output data are generated using real-world data from the
PNW Smart Grid Demonstration Project2—concerning the
energy consumption for the period 23.07.2014, 01:00-12:00,
from 493 households with 4 generated3 plans per agent to
choose from—as well as from the Hubway Data Visual-
ization Challenge4—concerning trips from 1000 extracted
unique users recorded for the Hubway bicycle sharing sys-
tem in Paris and showing the available bicycle stations at a
two-hour morning time slot (08:00-10:00).

The fitness function of the agents is expressed by a gradi-
ent descent that minimizes the standard deviation of the plans
collectively chosen over the tree topology using I-EPOS. In
the smart grid domain, a minimum standard deviation rep-
resents a stable energy demand with minimal changes in the
power supply. This decreases generation costs and increases
system reliability [Pournaras, 2013]. In bicycle sharing, a
minimum standard deviation of incoming/outgoing bicycles
among the stations keeps the utilization of all stations bal-
anced and minimizes the operational costs of technical staff

moving bicycles between stations.
Agents are self-organized [Pournaras et al., 2014c] in a

binary tree topology and can be sorted using several crite-
ria, for instance, how many number of plans they have, or
mathematical properties of the plans such as their standard
deviation. For the purpose of this work, the following three
agent strategies are evaluated:

strategy a Agents with a high total number of plans and high
standard deviation in the plans are placed on top.
Agents use all their plans throughout the learning
process and perform decision-making with a fit-

ness function expressed with standard gradient de-
scent [Burges et al., 2005].

strategy b Agents with a lower number of plans and higher
standard deviation are placed on top. Their fit-
ness function is expressed in standard gradient de-
scent [Burges et al., 2005] by considering two plans
and adding one more every 10 iterations.

strategy c Agents are randomly placed in the tree topology.
They learn with their fitness function expressed in
the adam gradiend descent [Kingma and Ba, 2014].

Figure 2 illustrates the learning curves of the three strate-
gies in smart grids and bicycle sharing. The strategies may
have comparable performance, nevertheless they traverse dif-
ferent optimization trajectories and their learning curves di-
verse. Accordingly, the three different strategies become
an important empirical means to evaluate the fitness of the
sonification and, up to a certain extent, to quantify the com-
plex inter-relationships between abstract aesthetic qualia and
measurable statistical information.
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(a) Bicycle
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(b) Energy

Figure 2. Learning curves of three agent strategies repre-
sented by the decrease in standard deviation over 100 algo-
rithm iterations. These curves are a core part of the sonifica-
tion that turns their measurable difference into an auditable
result, an aesthetic perceptual experience of decentralization.

Sonification as Material Speculation

Sonification systems are typically stratified and comprise
a series of submodules that retrieve, clean, filter, process and
parse data [Walker and Nees, 2011; Koutsomichalis, 2013].

2Available upon request at http://www.pnwsmartgrid.org/
participants.asp (last accessed: November 2015)

3Plans are generated by shuffling temporal values of the original
energy consumption. Such permutation may represent a change in
a user activity, for instance, exchanging the time of taking a shower
with the time of cooking.

4Available at http://hubwaydatachallenge.org (last ac-
cessed: November 2016)
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Coupling the output of such processes to sound synthesis
algorithms is, then, addressed by mapping schemas. We
have implemented the sound synthesis algorithm as well as
the necessary mapping and scaling schemata using Super-
collider5, a state-of-the-art programming language capable
of both real and non-real time sound synthesis. Sonifica-
tion systems implemented in SuperCollider have had some
relevance to our research [Koutsomichalis, 2013; Hermann
et al., 2007; Grosshauser and Hermann, 2009; de Campo
et al., 2011]. They, nevertheless, do not reflect on the decen-
tralization process, i.e. the actual data locality and peer-to-
peer interactions, and therefore, they mostly concern cases
where the sonification process ends up being a manifesta-
tion of a central meta-authority with full information: a cre-
ative sound composition process that does not need to draw
parallels or convey concepts of network protocols designed
for a decentralized data management. On the other hand,
there is an abundance of resources regarding the sonifica-
tion of decentralized systems, in particular evolutionary sys-
tems and flocking simulations [Huepe et al., 2014; Miranda,
2004; Bisig et al., 2007; Blackwell and Young, 2004]. Most
of this work, however, concerns simulation models and syn-
thetic data, in contrast to Desoundralization that exclusively
deals with real-world socio-technical data and the actual pro-
totyped implementation of a decentralized system for com-
putational intelligence applied to sharing economies.

Accordingly, our approach has been largely driven by
pragmatic and ad-hoc experimentation. Pragmatic, in that
we try out different tactics and then empirically assess the
results against their potential aesthetic and scientific merits.
Ad-hoc, in that we do not rely on any specific stratagem
nor do we necessarily intend to extrapolate generic algo-
rithms to be applied elsewhere. In this sense, and up to
a certain extent, there is an analogy between our approach
and well-standardized improvised composition practices—
these typically concern unique and situated pieces of mu-
sic meant to be performed in some particular context (space,
time, performers,etc). Desoundralization also suggest a sim-
ilar contextual and material specificity that is relevant to
particular decentralized systems and the data they gener-
ate. We do not suggest that such an approach is unique
or particularly innovative. We, nevertheless, emphasize
that since we attempt to compose sonifications that are in-
formative, aesthetically intriguing and effective as means
to probe complex, maybe even unknown or unidentified
content, this element of material specificity becomes of
paramount importance—to the extent that our overall prac-
tice could be thought of as a way to speculate about the
data under scrutiny. Thinking about decentralized data in
material terms entails immensely complex interrelationships
between agent-dependent/locally-produced information and
the system-wide outcomes of agents’ coordinated actions.
As far as the two datasets under scrutiny herein are con-

cerned, consider the sheer complexity of the optimum plans
locally selected by the agents at every iteration (selected
plans-local) as well as the ways in which they might relate
with one another and with the various globally quantified
measures in the scope of each different optimization strategy.
We argue that our sonifications do succeed in articulating this
sheer complexity, at least up to a certain extent.

In that vein, our approach comprises testing and evaluat-
ing different mapping schemata and audio synthesis strate-
gies. In the course of our experimentation with different
sonification methods and mappings, complex aspects of the
decentralized design and emergent intra/inter-dependencies
between localized data become eventually apparent, yet in a
haphazard fashion. Still, once some particular aspect or fea-
ture that we understand as exemplificatory of some function
within the system becomes implicit, it is possible to further
ameliorate and fine-tune the sonification so that the former
becomes explicit and even foregrounded. It is undoubtedly
questionable to what extent we create ourselves those fea-
tures that we are supposed to probe, but such an uncertainty
is integral to the scientific method in many contexts and has
been one of the main arguments of those criticizing it [Fey-
erabend, 1993; Latour and Woolgar, 2013]. In the context
of Desoundralization, emergent uncertainties of this kind are
rather desirable since they allow alternative insights to the
systems under scrutiny and, more importantly, since they
may also bear aesthetic merit.

Under these premises we discuss a few of our discarded
sonification attempts and explain how they pave the way to
the ones we finally adopt, so that the pragmatic, ad-hoc and
largely speculative nature of our approach is accounted for.

For the bicycle-sharing data, we initially experiment with
a few disparate and complex audio generators producing
sustained noisy textures in parallel and then we use data
to control the various synthesis parameters. However, the
resulting audio offers little, if any, insight to the dataset:
the transition from one iteration to the other is unnoticed
and no particular change occurs as the data progress to the
eventual convergence and, in general, nothing in what we
would listen delineates the complex inter-dependencies en-
acted the coordinated action of hundreds of localized agents.
Given the particular nature of the locally produced data—i.e.
mostly zeros with the occasional appearance of ±1 or ±2—
it immediately becomes evident that in order to represent
peer-to-peer relationships between the various autonomous
agents and to potentially reveal properties still unknown to
us, we should focus on aestheticizing the intrinsic ‘rhyth-
micity’ of those numbers scattered across the 1000 nodes.
Accordingly, we follow a completely different approach, this
time revolving around percussive sounds arranged in com-
plex configurations of varying density with respect to the

5Available at https://supercollider.github.io/ (last ac-
cessed: November 2016).
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localized data. These series of experiments make explicit,
albeit fail to properly account for, a series of simultane-
ous inter-dependent evolving ‘rhythms’ between the local-
ized data and their system-wide quantified effects as the en-
tire system approaches convergence. This observation has
been eye-opening in how we should proceed further. Follow-
ing, we scan the data in parallel from iteration to iteration,
experimenting with different granular synthesis generators
and trying to figure out which synthesis parameters have to
be controlled by what kind of data so that the both the mi-
croscopic intra-dependencies of the localized data and their
coordinated system-wide effects are properly delineated. In
this vein, we experiment with different generators (based
on both pure oscillators and the appropriation of real-world
recordings), with more sophisticated audio-spatialization and
more sophisticated meta-mappings employing formulated ra-
tios and basic statistical analysis on the raw input data.

To begin our orientating within the energy-management
dataset, we simply use the localized data (floating point num-
bers) to control the frequency of simultaneously sounding
oscillators—one per agent. The result is rather discouraging:
semi-periodic oscillations between the very same timbres—
a strong indication that the variance and volatility of the lo-
calized data is rather limited. We then seek ways to both
emphasize this rhythm and to better probe the subtle mod-
ulations that sustain it. The fact that the two datasets have
more or less the same structural qualities (hundreds of lo-
cal agents, hundreds of iterations, eventual convergence of
some sort, etc.) is a strong indication that the same mapping
strategy employed in the case of the bicycle-sharing dataset
is applicable herein, too. However, the energy-management
case calls for a completely different approach as far as audio
synthesis is concerned: simple, percussive sounds can de-
scribe neither how points in a floating-number continuum re-
late with one another, nor how they are distributed across the
hundreds of autonomous nodes that constitute this system.
By experimenting with various other kinds of audio gener-
ators a peculiarity of the localized data becomes apparent:
despite occupying a practically continuous domain and de-
spite being arbitrarily volatile, most of the time they oscillate
across fixed attractors. To arrive at sonifications that would
be both exemplificatory of this behavior and compositionally
intriguing we have to come up with more complex and non-
linear generators that would accentuate subtle changes and
occasionally behave in an unpredictable fashion. In this way
we could manage to represent all stable, bi-stable and diver-
gent states of the system with more interesting sonic textures.

We draw upon the experience of all our experiments and
discarded strategies in order to first identify what exactly
we aim at exploring in the data under scrutiny and, then,
to properly account for it. Our approach has been largely
iterative and empirically-driven and in this sense, it shares
some grounds with design science paradigmatic methodol-

ogy, where the goal is to create a satisfactory artifact via
an iterative process [Baskerville et al., 2016; Martens et al.,
2012]. The sonification algorithm in its final form embodies
the insights gained from previous attempts. It also embod-
ies our own subjective decisions on what emergent features
should be foregrounded and in what ways, so that the soni-
fication eventually becomes sound-art worth listening to for
its own sake and, more importantly, a process of speculation
about the system under scrutiny. While speculation of that
kind might be unacceptable in other scientific mileux, it can
become an invaluable tool in establishing new means for the
general public to conceive complex decentralized systems
that are too complex and non-intuitive for the mainstream
thinking and general perception in society.

Sound Synthesis and Mapping

Herein, we illustrate the sonification process of the two
output data of I-EPOS on energy demand and bicycle shar-
ing. The sonification process does not require input about the
tree topology and uses entirely the local and aggregated data
of the agents. For each dataset, the approaches are comple-
mentary in spirit. For the bicycle sharing data we are inspired
by glisson synthesis techniques [Roads, 2004, pp. 121-5].
The sonification of energy management comprises a series
of rather sophisticated generators that are active throughout
the entire duration of the piece. In both cases the idea is
to simultaneously represent the current state of all agents as
they ‘perform’ the various algorithmic iterations, occasion-
ally using complex mappings that also involve system-wide
statistical measures, so that the emergent complexity of the
original data manifests in sonic terms. In this way, as the
sonification advances, one may listen to how the overall per-
formance of the system changes at each iteration to arrive at
a certain performance outcome—a certain ‘telos’ suggesting
the eventual convergence.

Algorithm 1 demonstrates the minimal glisson generator
used for the sonification of the bicycle sharing data. The
recording of a bicycle bell is used as a source sound to con-
vey the application domain. The generator varies the rate by
which a fragment of a pre-recorded sound sample is repro-
duced so that a glisson is generated. The algorithm scans
the data and spawns thousands of glissons with their ini-
tial and final playback rate, the duration of their glissando,
their amplitude and their positioning in the stereo field pa-
rameterized accordingly. Each glisson is also fed through a
single-channel parametric equalizer and a low-pass filter, so
that their spectral characteristics are also forged algorithmi-
cally. 1000 glisson synthesis processes—one for each agent
in the original dataset—are initiated simultaneously. The ar-
guments for each glisson are then calculated as follows:

Initial playback speed: Calculated by the factor of the se-
lected plans divided by the factor of the aggregate plans
divided by the maximum of all aggregate plans.
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Final playback speed: Calculated by the initial playback
speed and the difference of the topical standard devia-
tion minus the standard deviation at the final iteration.

Frequency of the equalizer: Calculated by the ratio of the
incentive signal and the maximum incentive signal.

Gain or attenuation factor for the equalizer:
Calculated as the initial playback speed.

Glisson duration: Calculated with respect to the ratio of
the aggregate plans and the incentive signal.

Amplitude: It is a random value.

Algorithm 1 Glisson generator

SynthDef ( \gen , { a r g r a t e _ s t a r t = 1 , r a t e _ e n d = 1 , pan =

0 , dur =0 .5 , amp = 0 . 1 , f r e q = 440 , db =0 , buf =0;
var s i g n a l = Mix . new ( PlayBuf . a r ( 2 , buf , L ine . k r (

B u f R a t e S c a l e . k r ( buf ) * r a t e _ s t a r t , B u f R a t e S c a l e . k r (
buf ) * r a t e _ e n d , dur ) , l oop : 1 ) ) ;

s i g n a l = MidEQ . a r ( s i g n a l , f r e q , 0 . 4 , db ) ;
s i g n a l = LPF . a r (HPF . a r ( s i g n a l , 4 0 ) , 10000) ;
s i g n a l = s i g n a l * EnvGen . k r ( Env ( [ 0 , 1 , 1 , 0 ] , [ dur / 4 , dur / 2 ,

dur / 4 ] , [ − 3 , 0 , 3 ] ) , doneAc t ion : 2 ) ;
Out . a r ( 0 , Pan2 . a r ( s i g n a l , pan ) * amp ) } )

Note that in both sonifications the sonic image gradually
progresses from monophony to a wide sonic image (stereo or
multichannel). The overall speed is calculated as a fraction
of the difference between the standard deviation of the last
iteration and that of the current, so that the whole system
becomes progressively slower (or faster, if desired).

Algorithm 2 demonstrates the audio generator used in
the case of energy management. This generator is arguably
more complex and comprises the esoteric Astrocade gener-
ator6, a reverb unit, a chaotic noise generator (Crackle), a
single channel parametric equalizer and sophisticated multi-
mappings hard-coded into the body of the synthesizer. Note
that reg1, reg4, reg5, reg7 are higher order inputs, which
are mapped into several audio synthesis parameters the state
of which often depends on more than one of the former
ones. Note also that the parameters of the Astrocade are
meant to emulate 8-bit programming registers, different bits
of which often control different parameters, so that the gen-
erator cannot be controlled in a linear fashion. Chaotic noise,
non-linear ranges in conjunction with higher-order inputs
and multi-mappings built-in the synthesis engine account for
generators that would dramatically ‘magnify’ subtle changes
in the input data and that would occasionally destabilize and
behave in a chaotic fashion. As discussed in the previous
section, such a behavior is desired. The logic of the rest of
the algorithm is very similar to that of the bicycle-sharing
data: a generator is instantiated for each of the 493 agents
at play and subsequently controlled by the input data. The
parameters are set with respect to the following schema:

reg1: Calculated by the ratio of the selected plans over the
aggregate plans over the maximum of the latter.

reg4: Controlled by the selected plans.

freq: Calculated by the ratio of the incentive signal and the
aggregate plans.

reg5: Calculated with respect to the selected plans multi-
plied with the frequency, as defined above.

reg7: Calculated by the ratio of the aggregate plans and the
incentive signal.

Gain or attenuation factor for the equalizer:
Calculated as reg1.

Amplitude: Calculated by the value of selected plans.

Algorithm 2 Generator used in the sonification of the house-
hold energy consumption data.

SynthDef ( \gen , { a r g r eg1 =0 , r eg4 =0 , r eg5 =0 , r eg7 =0 , pan
= 0 , amp = 0 . 1 , f r e q = 500 , db = 0 ;

var s i g n a l = A s t r o c a d e . a r ( 0 , reg1 , 0 , 0 , reg4 , reg5 ,
15 , r eg7 ) ;

s i g n a l = S e l e c t . a r ( ( ( r eg4+ r eg7+ r eg5 ) / 385) . c e i l , [
s i g n a l , FreeVerb . a r ( s i g n a l * C r a c k l e . a r ( 0 . 9 + ( (
r eg1 + r eg4 ) / 400) , mul : ( r eg1 + r eg7 ) / 5 0 0 ) , ( (
r eg7 + r eg5 ) / 500) , 0 . 5 , 0 . 7 ) ] ) ;

s i g n a l = s i g n a l * LFNoise2 . a r ( f r e q / ( r eg1 + 5) ) ;
s i g n a l = MidEQ . a r ( s i g n a l , f r e q , 0 . 2 , db ) ;
Out . a r ( 0 , Pan2 . a r ( s i g n a l , Lag . k r ( pan , lagTime ) ) * amp *

0 . 2 ) ;
} )

Modulating the various ranges, changing the denomina-
tors in the ratios, accelerating or decelerating tempi or the
magnitude of the various changes (e.g. by multiplying with
a progressively larger/smaller factor) all result7 in accentuat-
ing and foregrounding different system properties. Improvi-
sation can be the means to further probe decentralized data.

Discussion and Conclusion

The outcome of this work has been 6 audio pieces8 with
duration of about 20 minutes each. These represent the soni-

6According to the help file of SuperCollider, “a custom ‘IO’
sound chip driver by Aaron Giles and Frank Palazzolo”, which may
not be “working as it should, but it’s still somewhat fun sounding”

7The illustration of the sound synthesis eschews everything rele-
vant to scaling and interpolation schemata for reasons of simplicity.
The latter are, nonetheless, rather significant in defining how the
outcome eventually sounds and are often defined by exponential
distribution curves and even in a reverse order, so that higher input
values correspond to lower output ones. Again, employing different
interpolation/scaling schemata allow us to pinpoint different prop-
erties of the systems under scrutiny.

8The audio pieces are available at
http://evangelospournaras.com/shared/
Desoundralization-mp3s.zip (last access: February 2017).
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fication of the three different strategies per dataset. The dif-
ferent strategies sound as different narratives leading to more
or less the same ‘telos’—i.e. the state of convergence for
each system. In both cases, the range and the characteristics
of change to various globally relevant parameters, such as
panning or speed, are fine tuned so that the ‘telos’ does not
come too fast or too sudden and so that the most important
micro-modulations at play are accentuated throughout the
entire sonification. Several sonic parameters are controlled
by means of ratios or other mathematical formulations in-
volving both local and global data as well as various statisti-
cal maxima/minima. In this way we can pinpoint those par-
ticular abstract properties that are identified as the most im-
portant or explicatory during the experimentation stage that
has preceded. We can sustain the complex nexi of micro-
modulations that seem to support and accentuate the afore-
mentioned narrative so that we also arrive at aesthetically in-
teresting compositions for sound-art enthusiasts.

Comparing the different strategies with one another is re-
vealing. In the case of the bicycle sharing data, strategy a and
in particular strategy c are more evocative of the sound ori-
gin, that is a bicycle bell: towards the end of the sonification
the various abstract glissandi gradually transform to definite
bell sounds. strategy b, which is the preferred one in terms of
aesthetics, is abstract throughout and is rather characterized
by minimal subtle change; the listener does not encounter the
dramatic glissandi present in the other two strategies as the
placement of the agents in the tree by the self-organization
process result in plan selections with a more moderate acous-
tic impact. The case of the energy management data is very
different, both because of the nature of the data and the syn-
thesis generator in use. A more involved and non-linearly
controlled sound generator is used as the basis of the entire
sonification to account for the unstable, unpredictable and of-
ten haphazard nature of electricity. This generator occasion-
ally ‘crackles’ or ‘explodes’ and often results in noisy tex-
tures while also sounding in the correct pitches. All strategies
here seem to eventually self-modulate, repeating more or less
the same sonic states over and over. All in all, the different
strategies sound (dramatically) different, in this way exem-
plifying the different processes that are in play, their effects
on the scattered autonomous agents, and our compositional
decisions regarding which kinds timbres/textures should be
associated with each system.

Desoundralization zeroes in on the output of I-EPOS and
intends to probe the complex locally generated data as well as
the way they inter-depend with system-wide properties and
macroscopic statistic measures. The proposed sonifications
allow us to gain invaluable insight in the internals of I-EPOS.
Traditional visualizations such as the ones depicted in Fig-
ure 2 are helpful in delineating the behavior of the aggre-
gate results and in quantifying statistical measures and over-
all system performance. Yet, it would be immensely difficult,

if at all possible, to aestheticize complex qualities with tra-
ditional visualizations such as the intra-dependencies forged
between the locally generated data as the iterations progress
or the relationship between the latter and overall macroscopic
qualities of the system. Our proposed sonifications do en-
able us to delineate the complexities of decentralized systems
as manifested both microscopically and macroscopically, to
speculate on particular aspects of them and to present our
findings in a straightforward phenomenological fashion that
may also hold artistic merit. In our approach we take into
account all localized agents and the data they generate in a
bottom-up fashion, in this way exposing the granularity of
the system, while at the same time we keep comparing them
with system-wide quantified data directly encoding the re-
sults in sound. While it may be impossible for non-specialists
to fully understand the deeper implications of such systems,
it is still straightforward for the general public to appreciate
the various processes at play in their proper granularity and,
more importantly, to immediately perceive how overall con-
vergence of the system translates to microscopic modulations
in the locally-generated data and vice-versa.
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