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Abstract—The democratization of Internet of Things and ubiq-
uitous computing equips citizens with phenomenal new ways for
online participation and decision-making in application domains
of smart grids and smart cities. When agents autonomously
self-determine the options from which they make choices, while
these choices collectively have an overall system-wide impact, an
optimal decision-making turns into a combinatorial optimization
problem known to be NP-hard. This paper contributes a new
generic self-adaptive learning algorithm for a fully decentral-
ized combinatorial optimization: I-EPOS, the Iferative Economic
Planning and Optimized Selections. In contrast to related algo-
rithms that simply parallelize computations or big data and
deep learning systems that often require personal data and
overtake of control with implication on privacy-preservation and
autonomy, I-EPOS relies on coordinated local decision-making
via structured interactions over tree topologies that involve the
exchange of entirely local and aggregated information. Strikingly,
the cost-effectiveness of I-EPOS in regards to performance vs.
computational and communication cost highly outperforms other
related algorithms that involve non-local brute-force operations
or exchange of full information. The algorithm is also evaluated
using real-world data from two state-of-the-art pilot projects
of participatory sharing economies: (i) energy management and
(ii) bicycle sharing. The contribution of an I-EPOS open source
software suite implemented as a paradigmatic artifact for com-
munity aspires to settle a knowledge exchange for the design of
new algorithms and application scenarios of sharing economies
towards highly participatory and sustainable digital societies.
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I. INTRODUCTION

The pervasiveness of Internet of Things technologies and
ubiquitous computing systems creates paramount opportuni-
ties for the establishment of participatory sharing economies
emerging in the context of smart grids and smart cities, for
instance, energy self-management by prosumers or improve-
ment of urban qualities by citizens via bicycle sharing. Such
complex techno-socio-economic systems are large in size, on-
line and involve decision-making processes with combinatorial
complexity, i.e. optimization of collective decisions is required
to prevent a blackout [1], [2] or to balance the number of
bicycles in stations [3]. In both cases, a large number of agents
perform coordinated decision-making to collectively determine

whether a power peak is reduced or whether bicycle stations
have a bicycle to pick up and space to return one.

When autonomous agents have a set of self-determined
options to choose from, while the collective outcome of
these choices characterizes the overall system performance,
the optimization problem is combinatorial and NP-hard in
complexity, for instance the knapsack problem [4]]. Most ear-
lier work focuses on computational aspects and heuristics for
efficiently computing solutions by splitting the computational
problem into smaller pieces and parallelizing computations.
Such approaches include branch and bound based algorithms,
for instance, BnB-ADOPT [5], NCBB [6] and the dynamic
programming approach of DPOP [7]. In contrast, this paper
focuses on approximation heuristics of decentralized combi-
natorial optimization systems in which participatory agents
locally self-determine their options from which they make
choices. Optimization is performed in a fully decentralized
fashion using coordinated remote interactions that orchestrate
collective decision-making. In this highly challenging scope
and problem setting, there is a very limited earlier work,
mainly the EPOS [8], [9] and COHDA [10], [11]] systems,
which face significant scalability issues that limit their broader
applicability, for instance EPOS performing low order but
expensive non-local brute-force operations, while COHDA
requiring a full information exchange between agents.

This paper introduces a novel, generic and highly effi-
cient self-adaptive learning algorithm designed to solve fully
decentralized combinatorial optimization problems: I—EPOﬂ
the Iterative Economic Planning and Optimized Selections. 1-
EPOS combines decentralized optimization and self-adaptive
learning and, in this sense, this dual capability opens up
supreme opportunities for an alternative paradigmatic design
to discriminatory big data profiling systems or centralized
artificial intelligence (AI) systems that overtake control and
violate agents’ autonomy. This is also the actual motivation of
this paper to study the I-EPOS applicability in two challeng-
ing application scenarios of participatory sharing economies:
stretch the potential of the fully decentralized and participa-
tory learning capability in I-EPOS to disrupt the norms of
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centralized management in techno-socio-economic systems.

Agents in I-EPOS autonomously self-determine (i) possible
plans that schedule the operation of an application and (ii)
their preferences for these plans. The possible plans represent
agents’ flexibility. Agents are structured in self-organized tree
topologies over which they perform collective decision-making
in a bottom-up and top-down phase. This process repeats,
agents self-adapt their choices and learn new monotonously
improved solutions. Information exchange is always either
local or aggregated. Experimental evaluation illustrates strik-
ing findings: I-EPOS monotonously and rapidly improves
solutions in the order of 10 iterations, a very few number
of changes in agents’ selections are required to maximize
performance thanks to the self-adaptation process over the tree
topology, trade-offs between local vs. global costs as well as
fairness are manageable and finally the cost-effectiveness is
notoriously superior to related algorithms, where cost stands
for computational and communication overhead.

The contributions of this paper are the following: (i) A
new decentralized combinatorial optimization algorithm based
on self-adaptive learning. (ii) A benchmark and performance
comparison of I-EPOS with three other related algorithms
that have not been systematically and rigorously compared
in earlier work. (iii) The applicability of I-EPOS in two
application scenarios of participatory sharing economies: en-
ergy management and bicycle sharing. Real-world data from
state-of-the-art pilot projects are used for the experimental
evaluation. (iv) The implementation of I-EPOS and other
related algorithms as a paradigmatic artifact for promoting
further research on decentralized learning and optimization as
well as the design of new application scenarios.

This paper is organized as follows: Section [[I| formulates the
optimization problem and the challenges this paper tackles.
Section introduces I-EPOS and discusses its design as-
pects. Section [[V| experimentally evaluates I-EPOS, including
a performance comparison with three other algorithms and
the illustration of two application scenarios in participatory
sharing economies. Section [V| discusses the implementation
of I-EPOS as a paradigmatic artifact for community. Finally,
Section [V]] concludes this paper and outlines future work.

II. DECENTRALIZED COMBINATORIAL OPTIMIZATION

Table [I| summarizes the mathematical symbols used in this
paper. Assume an agent a with a finite set of possible plans
‘P. representing different operational schedules, for instance
a time schedule for the allocation of resources, e.g. energy.
A plan is a vector with real values about the allocation of
resources. An agent a has to select one and only one possible
plan to determine its future operation, the selected plan,
referred to as s,. Figure [Ta] shows the selected plan as one out
of three possible plans. Plan generation can be performed with
various methodologies that include clustering [12]], Markov
decision processes for fast and optimal plans [13], or model
checking of stochastic multiplayer games [14].

Each agent a € A is connected to a network consisting
of a set of agents 4. The selected plans of several agents

TABLE I: Mathematical notations used in this paper.

Notation Meaning

A finite set of all agents in the network

B. ={0,1} binary decision for agent a

Cq C Dq set of children for agent a

Dy CA set of descendants for agent a

O(P,A) =]lsca Pa all combinations of sets P, for agents in A
Pa C R possible plans of agent a

a=|A| number of agents

¢ =maxqecA |Cal maximum number of children per agent
de Nt size of plans

p = maxaqecA |Pal maximum number of plans per agent

te Nt number of iterations

o€ O(P,A) a combination

o* € O(P, A) an optimal combination

0, COOro, €0 plan of agent a in combination o € O(P, A)
ac A an agent

c€Cq a child of agent a

0 €D, a descendant of agent a

te A root agent in the tree

Te{l,.. t} number of the current iteration

P € Pa possible plan of agent a

sg"') € Pq selected plan of agent a at iteration 7

g™ = D aca sff) global response of the network at iteration 7

alr) — > & Qescendants’ aggregated response of agent a at itera-
a 0€Dq 0 tion T

tEﬁ = sg"r) + ag"r) aggregated bra'nch' response of agent q at iteration 7
) approval or rejection of branch selection for agent a

57 €{0,1} at iteration T

5&7), gfﬁ, éf:),f:g'r), 6‘(17) preliminary ng) g, 3517) s th) and 55‘7)

change of preliminary value from the one of the pre-

(T = %(1) _x(=1)
VX =% x vious iteration for x(7) € {sf:) g, af:), tff)}

fo: R?Y 5 R global cost function

fL: RY 5 R local cost function

E(GT) = fa (g(ﬂ) global cost at iteration T

Ey) average local cost at iteration T

U™ unfairness at iteration

w:RT 5 R preference weight; raises the cost of disliked plans
AER controls the trade-off between global and local cost
pi,a ER dislike of plan 7 by agent a

. E &

(a) Selected plan. (b) Aggregated response. (c) Global response.

Fig. 1: Plans and responses. An individual box denotes a plan.

summed up together form the aggregated response as shown
in Figure [Ib] The selected plans of all agents form a global
response vector g = 3 1 Sq shown in Figure A global
response comes with a global cost Eq = fg (g), where fg is
a global cost function. System-wide, a global response with
low global cost is preferred over one with a high global cost.

The agents’ objective is to cooperatively select plans that
minimize the global cost. Each possible combination o &
O(P, A) = [],ca Pa consists of one plan o, per agent a,
from which the optimal combination o* with the minimal
global cost is selected. Cost minimization is defined as follows:

0" = argmin fg Z Oq
0€O(P,A) ac€A,0,€0
sq =0, VYac A (D



The number of combinations is O(p®), where p is the
maximum number of plans per agent and a is the number of
agents in the network. This means only small in size problems
are feasible to solve optimally. The overall problem can be
classified as 0-1 multiple-choice combinatorial optimization
problem. A related problem is, for example, the 0-1 multiple-
choice knapsack problem. In general, these problems are NP-
hard, which raises the need for approximation algorithms such
as I-EPOS, the algorithm introduced in Section m

Agents’ individual preferences for certain plans are con-
trolled via the parameter A. A A = 0 means no preferences are
considered. The larger the )\, the stronger the preferences are as
depicted in Figure [2| The preference of agent a towards a plan
is measured by the local cost function f;, (s,). Each agent a
orders the possible plans Py = {P1,a,P2.a;- - - s Pn.a} accord-
ing to their local cost fr,(P1,a) < fr(P2,a) < -+ < fL(Pna)-
Plans with lower index are preferred over plans with larger
index. The local cost expands the system objective space with
the following opportunities:

[]preference weight

cost [l global cost

(] [T
test possible plans selection

Fig. 2: Agent preferences in plan selection.

« Plan selections with a low average local cost Fr, so that
agents have also an explicit local benefit from their plan
selections. It is computed as follows:

Ep = p{fe (sa) | a € A}. 2

e Plan selections, whose local cost has a low standard
deviation among agents, so that agents’ contributions are
equally distributed. In this case the standard deviation is a
measure of system fairness [15]. In this paper, the unfair-
ness U is computed as the standard deviation normalized
with the mean of the local cost for all selections:

o olf(sa) lae A
p{fi (sa) [a € A}

Measurements of fairness can be performed after plan
selections by all agents.

3)

III. SELF-ADAPTIVE LEARNING

The network is assumed (self-)organized in a tree topology,
as this structure can be constructed and maintained within a
dynamic and distributed environment for arbitrary connected
networks using AETOS [16l, [9], [17] or the ECHO [18]]
algorithm, for example. A tree is a cycle-free connected net-
work. It serves the purpose of computing the aggregated and
global response in an efficient and accurate way, by preventing
double-counting. Moreover, a tree topology provides struc-
tured bottom-up and top-down incremental interactions, and
therefore, a self-adaptive learning can be performed iteratively

in a similar fashion as in the hierarchical structures of neural
networks. The root agent is denoted as t. Each agent a has a set
of children C, and a set of descendants D, with C, C D,. An
aggregated response ag = ZaeDa Sp of agent a corresponds
to the descendants’ response in the branch underneath.

The algorithm performs a number of iterations ¢. Each
iteration consists of a bottom-up and a top-down phase in
which the agents change their selected plans to reduce the
global cost compared to the previous iteration. Algorithm [I]
shows the pseudocode of I-EPOS. The bottom-up and top-
down phase for iteration 7 = 1,...,t are explained below.
To simplify the equations, the selected plans at iteration O are
assumed to be zero: sao) =0, Vac A

Input: agent a, plans Pq
Result: selected plan sg‘), aggregated response ag‘t), global response g(t)
s 0, a® 0, g0, t 0 VcecC
for 7=1 to t do
/* BOTTOM-UP PHASE */
if agent a is not a leaf node then
while messages from children are missing do
receive preliminary branch response EET) from child c;
end
if 7 = 1 then
| 80 1,
else
‘ compute the preliminary deltas 5 ET) Ve € Cq from Equalion;
end

Ve € Cq;

end
compute the preliminary aggregated response éfx") and global response
gﬁ"') according to Equation
select preliminary plan ég") according to Equation E}
if this agent is not the root node then
‘ send preliminary branch response f(ur) = éff> + éff) to the parent;
end
/* TOP-DOWN PHASE */
if this agent is the root node v then
g(™ « gsf) + 557>;
87 1,
else
‘ receive global response g(") and delta value 6‘(]") from the parent;
end
80— 5(I5D ) Ve e Ca;
send global response g(T) and delta value JET) to each child ¢ € Cq;
compute selected plan sff), aggregated response a&'r) and branch response
tET) for each child ¢ € C4 according to Equation

Algorithm 1: The I-EPOS algorithm.

end

A. Bottom-up phase

In this phase, each agent has knowledge about the changes
of the aggregated response performed by changes in the
selected plans of descendants in the branch underneath the
agent. This information propagates from the leaf nodes to the
root node. Changes in selected plans of all other agents are not
known. All local decisions made by the agents are preliminary
at this phase, as the effective decisions are made during the
top-down phase using knowledge about the parents’ decisions.
A preliminary plan selection is an actual estimated guess of
the optimal one given the incomplete agent knowledge. These
guesses are evaluated by the ancestors, who decide which
changes of plan selections to approve and which ones to reject.
This decision is encoded in the delta value §, of an agent a,
where J, = 1 means the preliminary selection of agent a



is approved, in contrast to §, = 0 for the rejection of the
preliminary selection. In the latter case, the plan selection
of the previous iteration remains valid. In the bottom-up
phase, each agent receives the preliminary selections from its
children and computes its own preliminary selection, prelimi-
nary aggregated response, preliminary global response and the
preliminary delta values for its children.

1) Aggregation: The aggregation of the bottom-up phase
aims at summing up the selected plans from the descendants
of each agent in the branch underneath that result in the
maximal improvement of the global response in comparison to
the one of the previous iteration. This approach is referred to
as MIA, the Maximal Improvement in Aggregation. An agent’s
knowledge about its children is illustrated in Figure [3]

gr

preliminary selections

L R

previous selections

Fig. 3: The input of an agent by its children.

For each child ¢ € C,, the agent a knows the aggregate
response of the child’s branch at the previous iteration tET_l)
and receives the preliminary aggregate response of the branch
EET) for the current iteration. The changes from the aggregate
response of the previous iteration to the preliminary aggregate
response of the current iteration in the branch of child ¢ are
denoted as VE{” = £ — t""Y MIA determines which
preliminary aggregate response to approve and which to reject
by combining knowledge of the branches as shown in Figure 4]

cost . . . L R

g o]

global response test approve/reject combinations

“preliminary aggregate

Fig. 4: Approval or rejection of branch selections with MIA.

An agent can only approve or reject changes on the ag-
gregated response of a whole branch and not individual plan
selections as the latter ones are not known to agents. This
makes the algorithm highly decentralized in contrast to related
work [[L1], [10] that relies on system-wide exchange of the
actual selected plans instead of aggregated ones. At the first
iteration when there is no history, all changes are approved.
For all iterations after the first one, each agent evaluates
all possible combinations of branch approvals and rejections
O(B,C,) and selects a combination that maximally improves
the global response. The delta value, that encodes a subtree
approval or a subtree rejection, for child ¢ in combination
o € O(B,C,) is referred to as o.. Since an approval is encoded
with o, = 1 and rejection with o, = 0, the effect of a
combination o on the global response is evaluated as follows:

approved/rejected selections

g™l ¢+ Zcecu OCVEET). A combination o* that results in
the lowest global cost is selectedﬂ The delta values of o* are
chosen as the preliminary deltas SET) of the respective child c.
The delta value selection can be formalized as follows:

o = argmin fo | gV + Z 0.Vt

0cO(B,Ca) ceCq,0.€0

5 = of, VeeC,. 4)

The changes approved by the preliminary deltas are applied
to the aggregated response and global response. This results
in the preliminary aggregated response and the preliminary
global response as shown in the following equations:

A7) a0 4 3 EOED
ceCq
4 S OV,
ceCq

g

(&)
Note that in the bottom-up phase the children are not aware
about the approval or rejection of their preliminary plan
selections. This information is sent in the top-down phase.

2) Plan selection: The effective plan selections follow the
maximum improvement design principle of MIA. The concept
is illustrated in Figure [3]

agent[ :Ij ' """ > B . . fE>:I:\:i
aggregate selection

global response test ﬁbssible piéns

Fig. 5: Plan selection.

Each agent a selects a plan that maximally improves the
global response. The preliminary global response is used as
it includes the preliminary approved changes made by the
descendants. The plans are selectecﬂ as follows:

sl = arg min fg (gt(;) + sz‘,a) + w(Pi,a),
Pi,a €Pa

where Vp; o = Pia — 551771)7

w(Pi,a) = A Pia-0 {fc (éﬁr) + vPi,u) | Pia € Pu}
i

Pija = —,
n

where the preference weight w(p; ) is normalized using the
standard deviation of the different simulated global costs for

2If multiple combinations are optimal, o* is chosen uniformly at random
out of all optimal combinations.

3If multiple plans are optimal, the selected plan is chosen uniformly at
random out of all optimal plans.

)



the respective possible plans. The p; o expresses the dislike of
an agent a towards a plan i.

3) Parent informing: Every non-root agent informs its
parent about the selections of its respective branch with the
preliminary selected plan and the preliminary aggregated plan
of the agent. This procedure is shown in Figure [6]

Fig. 6: Agent output during the bottom-up phase.

B. Top-down phase

In this phase, all agents approve/reject the preliminary se-
lections and they update a consistent for all agents aggregated
and global response. At the end of this phase, each agent has
a selected plan, the descendants’ aggregated response in the
branch as well as the global response for the current iteration.

The root agent computes the global response based on its
preliminary plans and responses that propagates downwards
to all other agents in the network. For the root agent, the
preliminary selected plan as well as the preliminary aggregated
response correspond to the effective selections:

al” = al", (©6)

The preliminary deltas (%T) computed with MIA are used
at this stage to determine the effective delta values 5§T).
The selection of the root agent is always approved, hence
5§T) = 1. The delta value for the other agents is determined
by their respective parent agent a. The changes of a child ¢
are approved if two conditions hold: (i) The ancestors of the
parent approve the changes with 6((1T) = 1. (ii) The parent
agent itself approves the changes of the child and its branch
with 557) = 1. Therefore, the parent agent a computes the
deltas for its children as follows:

5 =55 veec,. 7)

A plan selection by an agent is approved in the top-down
phase if and only if all its ancestors approve the preliminary
plan selection. If one of the ancestors rejects the changes in the
responses, the plan selection of the previous iteration remains
as the plan selection of the current iteration. The two scenarios
of an approval and a rejection are depicted in Figure [/| Based
on the approved changes, the effective plan selections and
aggregated responses are computed as follows:

O approved
E Orejected

R

A

LEI:IO R
global response distribution selections

(a) Ancestors send an approval signal.

O approved

E Orejected
A
L EI:l() R

global response distribution selections

>

(b) Ancestors send a rejection signal.

Fig. 7: Approval and rejection during the top-down phase.

) = oY 4 6V
a) = oV 4+ 60vaL)

t) =tV 1 5OvED ) veec,. (8)

C. Other system design aspects

Some other design aspects are discussed below: (i) auton-
omy, self-determination and participation, (ii) learning princi-
ple and monotonous improvement, (iv) termination.

1) Autonomy, self-determination and participation: The
possible plans are self-determined by the agents as they
are locally generated without I-EPOS been involved in this
process. The algorithm does not impose (i) the plans, (ii) their
number or even (iii) the overall participation into the process
of generating plans at first place. I-EPOS can even operate with
agents that only have a single possible plan, in other words,
inflexible agents that acquire full control of their operation.
Even in this extreme case, the self-adaptive learning process
of I-EPOS is designed to optimize the system by compensating
with the collective decisions of the other participating agents.

In contrast to the vast majority of optimization/learning sys-
tems, the design approach of I-EPOS promotes autonomy and
self-determination. Free-riding issues and fairness in partici-
pation can be addressed in different application scenarios with
relevant incentive systems [[19] and reward mechanisms [20] .

2) Learning principle and monotonous improvement: In
contrast to the earlier self-optimizing approach of EPOS [8]],
[9], the learning process of I-EPOS is self-adaptive as plan
selections are a collective result computed within the bottom-
up and top-down phase of a single iteration as well as across
different iterations by using aggregated historical information.

The MIA mechanism of I-EPOS overcomes a challenging
artifact of distributed optimization: the composition of two op-
timal solutions does not guarantee a combined overall optimal



solution, i.e. combining optimization solutions from different
tree branches. MIA ensures that independently determined
improvements of the global response by different tree branches
do not result in decreased performance when aggregated.

To certain extent, the learnign concept draws parallels from
backpropagation [21] in neural networks: In the forward pass
(bottom-up phase) the agents predict their new selections
and in the backward pass (top-down phase) the error is
backpropagated in the form of delta values. An error of 1
means the agent changes its plan selection, whereas, an error
of 0 means no change is required.

The global cost in one iteration cannot be larger than
the global cost of the previous iteration, i.e. the global cost
decreases monotonously. Consider the selection process at the
root agent. The option to reject preliminary changes ensures
that MIA either reduces the global cost or at least maintains
the same global cost if the root agent selects the responses of
the previous iteration.

3) Termination: 1-EPOS terminates after a fixed number
of iterations to empirically control the communication and
computational cost. However, other criteria may be chosen.

o Termination if no agent performs a plan change. This
solution can be implemented with a boolean flag that
agents can pass in the top-down phase. This termination
approach may cut out some further improvements: agents

may choose a different possible plan with equal costE]

that may lead to new combinatorial solutions with further
improvements in the next iterations. For the same reason,
termination is not guaranteed as selections may change
without improvement in the global cost.

o Termination once the global cost equals the one of the
previous iteration. This approach is similar to previous
one, however, termination is guaranteed given that the
global cost decreases monotonously.

o Termination once the global cost is lower than a thresh-
old. The two aforementioned termination approaches may
result in a large number of executed iterations from which
only a few of them result in a significant performance
improvement. In this case, a threshold can significantly
decrease the communication and computational cost.
However, if the threshold is not chosen effectively or
does not match the empirical data in use, it may lead
to significant overhead as well.

IV. EXPERIMENTAL EVALUATION

Experimental evaluation is performed in a network of 1000
agents randomly organized in height-balanced binary tree, i.e.
a binary tree of minimal height. Each experiment is repeated
50 times with different seeds in the random number generators.
Evaluation is performed with both (i) synthetic and (ii) real-
world data from two application domains as illustrated in
Section The synthetic data concern 16 possible plans
of size 100 generated from a standard normal distribution at

4Recall that more than one optimal possible plans are selected uniformly
at random.

every experiment repetition. By default, agents adopt A = 0
that deactivates agent preferences over the possible plans.
The variance reduction is used as a global cost function that
reduces oscillations in the global response.

Figure shows how the global cost, i.e. the variance,
changes over the course of 30 iterations. The low in size area
around the line is plus/minus the standard deviation of the
measured variance over all experiment repetitions.

L 12
510
2
8 100 s 8
% Q
% 956
> —
10 g4
g 2
1 0 e
0 5 10 15 20 25 30 0 5 10 15 20 25 30

iteration iteration

(a) Global cost. (b) Number of changes compared to the

previous iteration.

Fig. 8: Variance reduction and changes of selections in I-
EPOS.

On average, the variance is reduced from 480 £ 70 in the
initial iteration to 3.2 4+ 0.30 after 30 iterations. As a scale of
comparison: randomly choosing standard normally distributed
plans results in an approximate variance of 1000 £ 140 on
averagd’| The second termination criterion of Section
completes the algorithm in 14 + 2.3 iterations.

Figure [9] evaluates two scalability aspects of I-EPOS: the
influence of variance under increasing number of (i) agents
and (ii) children. Figure @ shows that a low number of
agents results in a low number of combinations and therefore
the variance increases as more plans are introduced. After a
critical point, the combinations explode and therefore variance
starts decreasing as the number of agents increases. Figure Ob]
confirms that the inter-agent communication within the tree
structure can be optimized for network delays without a
significant influence on the algorithm performance.

A. Performance comparison

A fair comparison of I-EPOS with related work is not
straightforward as the problem setup is highly challenging
and there is a very limited number of algorithms designed
to operate in a similar fashion as I-EPOS. Although several
earlier algorithms and their applications draw parallels with
the distributed design of I-EPOS, for instance ant colony
optimization for routing in wireless sensor networks [22],
[23]], reinforcement learning for traffic light control [24] and
load-balancing in cell tower of mobile networks [25], these

5The sum of 1000 standard normally distributed plans is normally dis-
tributed with zero-mean and a variance of 2 = 1000. Based on the fact that
the empirical variance 52 follows a chi-squared distribution %&2 ~ Xd2_1,
the empirical variance is expected to be 1000 with a standard deviation of
about 142.
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Fig. 9: The influence of variance under increasing number of
agents and children.

algorithms are not directly applicable to the optimization
problem illustrated in Section For this reason, this section
focuses on three state-of-the art algorithms and configurations
capable of performing decentralized combinatorial optimiza-
tion: (i) EPOS, (ii)) COHDA and (iii) Greedy. The rest of
this section compares the design features of the algorithms
and illustrates performance comparisons that underline the
supreme performance of I-EPOS.

1) EPOS: EPOS [8], [9] is an actual earlier design of I-
EPOS that does not include its learning capability and focus
entirely on optimization within a single bottom-up and top-
down phase. EPOS and I-EPOS solve the same decentralized
combinatorial optimization problems and have common do-
mains of applicability [12f], [15]. Their design though has a
few significant differences, for instance, decision-making in
EPOS takes place in the parents on behalf of the children,
whereas, the decision-making in I-EPOS is fully localized.
EPOS performs a non-local brute-force computation of all
possible plan combinations of the children. This imposes
certain computational constraints for tree topologies with a
high number of children. Moreover, I-EPOS is capable of
improving solutions dynamically, thanks to a fully decentral-
ized iterative backpropagation mechanism. In contrast, EPOS
operates in a single iteration and the top-down phase is an
actual propagation of the global response computed.

2) COHDA: COHDA [10], [L1] is an iterative asyn-
chronous algorithm. In contrast to EPOS and I-EPOS, it does
not rely on a tree topology for its operations. Because of
this higher abstraction, the nodes of COHDA incrementally
exchange and merge with their neighbors complete sets of
selected plansﬂ referred to in COHDA as the knowledge
base, in contrast to EPOS and I-EPOS respectively that only
exchange local and aggregated plans. A complete exchange of
information is unscalable with the increase of network size and
can cause a significant communication overhead in resource-
constraint networks. For the purpose of the performance
comparison, COHDA is configured to run over a tree topology.

3) Greedy: Greedy is a particular configuration of I-EPOS
running for one iteration with at most one child per agent, i.e.

SCOHDA uses counters for each agent selection to distinguish the most
recent one.

agents in a sequence. This particular configuration corresponds
to a sequential greedy optimization algorithm.

4) Evaluation: The three algorithms are compared with
respect to the following two metrics: (i) computational and
(i) communication overhead. The former is computed by the
amount of global cost computations performed. The lattelﬂ]
measures the amount of data transmitted in the network and
it is computed by the number of plans and response vectors
exchanged. These metrics can provide performance bench-
marks and indicate the suitability of each algorithm for Internet
of Things networks and networks with scarce processing or
energy resources. Table [lI| compares the performance of the
four algorithms in respect to both metrics.

TABLE II: Performance comparison of the four algorithms.

Algorithm global cost computations vectors transmitted
per agent | critical path | per agent | critical path
I-EPOS O(pt) O(ptloga) | O(t) O(tloga)
EPOS O(p°) O(p¢loga) | O(p) O(ploga)
COHDA O(pt) O(pt) O(at) O(at)
Greedy O(p) O(ap) O(1) O(a)

Performance is given for each agent and the critical path
defined by the required sequence of agent executions. For
instance, in the bottom-up phase of I-EPOS, the critical path
corresponds to the tree height that is logarithmic to a. The
shorter the critical path, the faster the algorithm execution is.

I-EPOS, COHDA and Greedy perform local plan selection
and therefore the computational complexity is linear to the
number of plans p. EPOS has a higher computational load to
perform given the combinational selections it performs. The
computational complexity of I-EPOS and COHDA depends
on the number of iterations executed. The computational
complexity over the critical path depends on the network size.
For I-EPOS and EPOS, it is the tree height that influences the
computational complexity and it is logarithmic to the number
of agents a. Agent selections in COHDA require an equal or
higher number of iterations ¢ than the tree height. The Greedy
algorithm is computationally more expensive than the other
algorithms given its sequential execution. [-EPOS and Greedy
transmit a constant amount of data per agent and iteration. In
contrast, the transmitted data of EPOS depend on the number
of plans sent to the parent. COHDA has in principle the highest
communication overhead by scaling linearly to the network
size given that messages contain all agent selections.

Figure [I0] illustrates the performance comparison on the
critical path for the four algorithms. Trade-offs of cost-
effectiveness are illustrated by showing the resulted overhead
for different levels of variance reduction. The consecutive
iterations are the ones that increase the computational and
communication overhead in Figure [I0] This shows for I-EPOS
and COHDA how fast each algorithm achieves a certain per-
formance level, i.e. a variance reduction. I-EPOS outperforms

"The communication overhead for building and maintenance of the tree or
another dynamic topology for COHDA is not counted in these measurements
as it is out of the context of this work and it is subject of the network reliability
and the application domain.



all algorithms and shows a paramount cost-effectiveness for
a decentralized learning algorithm. After several iterations,
meaning an invested computational and communication cost,
the two algorithms converge at the same variance level. Results
for each agent show a similar trend to the ones of the critical
path except Greedy that is fully outlined in Table
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variance
variance

10 10

100 1k 10k 100k IM 10M 1k M 1G
cost computations vectors transmitted

(a) Computational overhead. (b) Communication overhead.

Fig. 10: Performance comparison of the four algorithms over
the critical path.

While I-EPOS and COHDA eventually converge to a similar
performance level, their traversal of the optimization space
varies significantly. Figure [T1] visualizes this effect of the al-
gorithms by depicting which agents change their plan selection
over runtime. For a clearer visual illustration, an experiment
with 100 agents is shown. It is worth noticing that while
I-EPOS overperforms COHDA by finding optimal solutions
faster, it also performs a significantly lower number of changes
in plan selection (190 in total). In COHDA all changes of plan
selections need to be propagated to the neighbors. In contrast,
changes in EPOS are performed in branches that over the
passage of the iterations get rapidly shorter. At the end, only
a few single isolated changes in the selected plans contribute
to a maximal performance.

B. Application scenarios on sharing economies

This paper shows the broad and significant impact of
the proposed generic algorithm on two participatory sharing
economy scenarios in smart grids and smart cities: (i) energy
management and (ii) bicycle sharing. Although I-EPOS is
applicable in the broader context of large-scale multi-agent
systems, the two very different in nature applicability domains
are critical and urgent for building a more sustainable society
and they are chosen so that the generic design of I-EPOS is
stretched. The evaluation uses real-world data from state-of-
the-art smart grid and smart cities pilot projects.

1) Energy management: This application scenario envi-
sions a highly participatory demand-response program for
increasing system reliability by, for instance, preventing power
peaks that can cause high energy costs and catastrophic
blackouts [[1], [2]. Residential consumers participate by equip-
ping one or more controllable household appliances, e.g.
refrigerators, water heaters, heating/cooling systems etc., with
software that can operate the appliance according to plans
selected by I-EPOS. Technology for this control level is

feasible as discussed in earlier work [26]. Each household
is represented by an I-EPOS agent that generates possible
demand plans representing comfort and lifestyle flexibility, for
instance, different times of taking a shower, or varied levels of
thermostat setpoints. The global response corresponds to the
total energy demand of all households aggregated. One way to
reduce power peaks is to stabilize the demand by distributing
it uniformly over time. This can be formalized as minimizing
the variance of the global response. The variance is therefore
used as the global cost function.

Real-world data from the Pacific Northwest Smart Grid
Demonstration Project (PNW) by Battell are used for the
experimental evaluation. The data contain 5-minute electricity
consumption measurements from 1000 residential households
on 23.07.2014. Two plan generations are performed within
the day and therefore the dataset is split in two parts, the
PNW-MORNING for the duration 01:00-13:00 and the PNW-
EVENING for 11:00-23:00 respectively. The cut off duration
is used for plan generation. A set of 13 possible plans is
generated as follows: the measured demand is the first plan; the
other 12 plans are generated by shifting the measured demand
5,10,...,25 or 30 minutes into the past or into the futureﬂ
The local cost of each plan is the amount of minutes shifted
compared to the original demand.

The original power demand vs. I-EPOS global response for
the PNW-MORNING and PNW-EVENING are illustrated in
Figure I-EPO reduces power peaks from 940 £ 0 to
790 £ 2 for PNW-MORNING and from 800 + 0 to 710 £ 2
for PNW-EVENING resulting in lower high-peak costs and
instabilities in the power grid.

The peak-shaving capability of I-EPOS is also evaluated
under plan preferences given that the possible plans are
generated by a varied amount of shift. Figure [I3] shows the
trade-off between peak demand reduction and the amount of
shift in the selected plans averaged over all agents. The trade-
off is controlled via the A\ parameter. A A = 0 corresponds to
the default I-EPOS optimization without plan preferences and
A =100 to the original demand.

2) Bicycle sharing: In the context of smart cities, bicycle
sharing is an important asset for improving urban qualities
as citizens can use environmental friendly means of trans-
portation, improve their individual health and decrease traffic
congestion in densely populated cities. At the same time, they
do not have to use their own bicycles that can challenge the
available parking spaces and increase the risk of stealing.

The broad establishment of bicycle sharing requires a high
quality of service and low operational costs by making sure
that citizens can always pick up a bicycle in a station and
can always return it back to another one without the station
exceeding the capacity of parked bicycles. In other words,

8 Available upon request at http://www.pnwsmartgrid.org/participants.asp
(last accessed: March 2017)

9For example, the plan shifted 30 minutes into the future is the measured
demand for the duration 01:00-12:00.

10The algorithm terminates after 264 3.6 and 38 +4.1 iterations according
to the second termination criterion of Section
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Fig. 11: (a)-(h) I-EPOS vs. (i)-(p) COHDA. Network snapshots showing the agents (in black) changing their selection and

agents (in white) that do not change their selection.
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Fig. 12: Power peak-shaving by I-EPOS on the PNW dataset.
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station should remain load-balanced under various conditions,
such as population density, mobility, weather etc. Manual
relocation of bicycles by system operators in not viable in
the long term and can increase operational costs significantly.

In the context of bicycle sharing, the possible plans may
concern user recommendations about the stations from which
bicycles are picked up and to which they are returned. The
possible plans are encoded as a vector with values the incom-
ing minus the outgoing bicycles of a user in each station at a

certain time slot. For example, a user traveling from station 1
to station 3 and from station 4 to station 3 has the following
plan: (—1,0,2,—1,...). I-EPOS can select recommended
stations for each user agenﬂ such that the number of bicycles
among the stations remains balanced. This can be formalized
as minimizing the variance of the global response. The plan
dimension here is the stations in contrast to the energy domain
in which load-balancing over time is performed.

I-EPOS generates bicycle sharing plans by reasoning based
on real-world historical datﬁ from the Hubway bicycle shar-
ing system in Paris. Although this dataset does not contain
personalized records, user trips are extracted from user infor-
mation: zip-code, year of birth and gender. All trips that have
common values in these fields are assumed to be made by the
same user. A random subset of 1000 unique users is used as
agents in I-EPOS, with a different seed for each run of the
algorithm. The timeslot is chosen from 8:00am to 10:00am.
All historic unique trips a user did in the defined timeslot of
a week day are considered as the possible plans for that day.
The distance of the stations is encoded in the trips of the users.
The local cost of each plan is defined by the likelihood the
user does not make the trip instructed in the plan. For instance,
if three plans are chosen in 4, 5 and 1 days of the measured
time period respectively, the local cost for these plans is 0.6,
0.5 and 0.9 respectively.

Figure [T4p illustrates the load-balancing of the stations
using [-EPOS without varying the local cost of the plans after
15 iterations. I-EPOS reduces the variance from roughly 230
to 0.58. This indicates a significant potential to reduce the
number of manual bike relocations. However, recommenda-
tions may not be followed if the user is unlikely to choose a
certain trip, i.e. a trip with high local cost. Figure [T4p shows
the trade-off between global and local cost controlled via the
A parameter after 30 iterations. A A = 0 is the one extreme in
which the local cost is not considered, in contrast to A = 100

"1Such an agent can be implemented as a mobile app, for instance.

12The dataset is made available in the context of the Hubway Data Vi-
sualization Challenge: http://hubwaydatachallenge.org/ (last accessed: March
2017).
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that results in global response equivalent to the original data.
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Fig. 14: I-EPOS performance for the bicycle sharing dataset.

Results show that making plan selection with the average
likelihood of the selected plan reduced in half is followed by
a reduction of the variance by a factor of more than 100.

V. I-EPOS AS A PARADIGMATIC ARTIFACT

Section confirms that solutions to decentralized com-
binatorial optimization problems have a tremendous potential
to build more sustainable and resilient digital societies [27].
Authors here move a step forward to contribute a paradigmatic
software implementation of I-EPOS together with other sup-
porting software relevant for the broader research communities
of distributed systems, optimization, artificial intelligence,
machine learning, autonomic computing, multi-agent systems,
game theory and others. The contributed exemplatE] is a
generic and modular open source Java implementatioﬂ of
I-EPOS that provides the following opportunities for system
evaluations: (i) Several different global and local cost func-
tions. (ii) Possible plans of the same as well as different
application domains generated from real-world and synthetic
datasets. (iii) Different network settings, such as varying the
topological properties of the network. The exemplar is also
accompanied by a tutoria and high-quality videos for a
visual comprehension of the self-adaptive learning process.
The software suite comes with a simulation as well as an
actual prototype of I-EPOS designed with a distributed pro-
totyping toolkit [28] for deployment in real-world testbeds
such as Planetla@ The community can also make use of
integrated plotting and graph visualization capabilities as in
Figure [T1] Finally, the software suite comes with a graphical
user interface for interactive executions as shown in Figure [T3]

13 Available at http://epos-net.org/shared/I-EPOS.zip (last accessed: March
2017).

14 Available at |https:/github.com/epournaras/EPOS| (last accessed: March
2017).

15 Available at https://github.com/epournaras/EPOS-Manual (last accessed:
March 2017)

16 Available at https://www.planet-lab.org (last accessed: March 2017). The
toolkit is successfully used in the Euler high-performance cluster of ETH
Zurich: Available at https://scicomp.ethz.ch/wiki/Main_Page (last accessed:
March 2017).
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Fig. 15: The graphical user interface of I-EPOS.

The object-oriented implementation of I-EPOS allows a
straightforward experimentation without any change in the
core I-EPOS code (black box use). Well-documented in-
terfaces provide a high level abstraction and modularity,
while allowing customization in different system setups and
application domains. This is achieved with the inheritance
design pattern that enables easy prototyping of combinatorial
algorithms and cost functions. The base class of an algorithm
implementation is the agent .Agent that defines the set of
possible plans and the selected plan. It also defines a global
and local cost function as well as the functionality for remote
distributed communication by maintaining a limited neighbor
list. Subclasses have to implement an active and passive state
that define the algorithmic operations and the reactions to
different received messages respectively. Two such classes are
the agent.IeposAgent and agent.CohdaAgent for
the I-EPOS and COHDA algorithms. The base class of a cost
function is the func.CostFunction. It defines a method
that receives as input a plan and returns the computed cost. The
computations are specified in the subclasses, for instance, the
minimum variance cost function func.VarCostFunction
or the func.SqgrDistCostFunction that minimizes the
squared Euclidean distance from a target incentive signal [[12],
[[15]. Logging follows the observer design pattern with the ab-
stract class agent.logging.AgentLogger correspond-
ing to the observer. It defines and writes to logs a serializable
object containing the state of an agent. The logged information
is defined in the subclasses. After each iteration, an agent sends
its state to all its observers that handle the logging.

Although the contributed artifact is still a research proto-
type, several target groups can make an effective use of it.
System developers guided by the contributed tutorials and
interfaces can extend the artifact, design new optimization
algorithms and use the implemented benchmarks for evalua-
tion. In addition, policy-makers and non-computer scientist can
interact the software artifact via the graphical user interface to
evaluate datasets and several system scenarios. Entrepreneurs
can also use the I-EPOS artifact as a virtual laboratory of
innovation by evaluating the feasibility of new application and
business use-cases. Finally, the prototyping of a real-world dis-
tributed implementation of I-EPOS significantly improves the
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technical readiness level of a future community contribution.

VI. CONCLUSION AND FUTURE WORK

This paper concludes that the fully decentralized self-
adaptive learning process in the challenging combinatorial
optimization of I-EPOS is feasible and can even significantly
outperform other related algorithms that either make use of
non-local brute-force operations or exchange full information.
In contrast to discriminatory big data profiling or deep learn-
ing Al systems that often overtake control and undermine
autonomy, I-EPOS promotes participation, self-determination
and autonomy, while it is highly scalable and relies on the
exchange of entirely local and aggregated information. These
system properties allow new novel disruptive designs for par-
ticipatory sharing economies in the context of smart grids and
smart cities such as energy self-management or self-regulation
of urban qualities via bicycle sharing. Experimental evaluation
using real-world data from two state-of-the-art pilot projects
in these domains provide a proof-of-concept for the broad
applicability of I-EPOS. A software implementation of I-EPOS
as an exemplar aims at settling a milestone for further work
on decentralized learning and combinatorial optimization.

Future work includes the evaluation of new global/local
cost functions, the performance comparison of building and
maintenance mechanisms for tree topologies in different net-
work settings and the exploration of other application domains.
The interplay of the scientific aspects of I-EPOS with art can
provide new means for the general public to conceive a self-
adaptive learning process that is too complex or non-intuitive
for the mainstream thinking and general perception in society.
Such work is the sonification of output data from I-EPOS to
construct a constitutionally narrative of complex decentralized
systems towards their equilibrium [29].
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