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Abstract—The emergence of the Internet of Things in Smart
Cities questions how the future citizens will perceive their
predominant living and working environments and what quality
of living they can experience within it, for instance the level
of everyday stress. However, perception and experienced stress
levels are challenging metrics to measure and are even more
challenging to correlate with an underlying causal-effectual rela-
tionship in such stimulus abundant environments. The Internet
of Things, enabled by several pervasive and ubiquitous devices
such as smart phones and smart sensors, can provide real-time
contextual information that can be used by advanced data science
methodologies to generate new insights about urban qualities
in Smart Cities and how they can be improved. The goal of
this study is to show the predominant factors, which influence
perceptual qualities of inhabitants in a Smart City equipped
with sensing capabilities by the Internet of Things. To serve
this goal, a novel data collection process for Smart Cities is
introduced that involves (i) environmental data, such noise, dust,
illuminance, temperature, relative humidity, (ii) location/mobility
data, such as GNSS and citizens density detected via WiFi, and
(iii) perceptual social data collected by citizens’ responses in smart
phones. These fine-grained real-time data can provide invaluable
insights about the spatial correlations of the sensor measurements
as well as the spatial and citizens’ similarity illustrated. The data
analysis illustrated reveals significant links between stress level
and environmental changes observed.

I. INTRODUCTION

The technological transformation of urban environments
to Smart Cities enabled by the introduction of the Internet
of Things poses challenges beyond technological ones. What
urban qualities become predominant in this transformation?
How citizens perceive modern urban environments and how
quality of life influences factors such as the individuals’ stress
level? This paper illustrates a novel experiment in a real-world
urban field designed for a fine-grained real-time sensing and
mining of urban qualities in Smart Cities equipped with the
Internet of Things.

The experiment involves the data collection of a broad
spectrum of environmental and biofeedback physical/virtual
sensors, as well as measurements of citizens’ perception
about their urban environment. The experiment involves 37
participants in the area of Zurich, Switzerland, who traverse a
city path. The participants are equipped with several sensory
devices and a smart phone through which they can express
their perception about the urban environment they experience,
for instance, how interesting, quiet, spacious or secure it is.
This experimental methodology comes in contrast to other
related experiments performed that either rely entirely on smart
phone sensors [1], [2] or sensors embedded in public space

and vehicles [3], [4]. Several technical challenges such as the
automated detection of greenery and the data localization in the
urban environment are tackled. The analysis of the collected
data shows the spatial correlation between all pairs of sensor
measurements. It also shows the similarity of urban spaces
and citizens’ groups. The illustrated data analysis can provide
new insights about future applications of Smart Cities such
as collective stress regulation, more intelligent policies for
security and urban development, traffic management adjusted
to citizens’ life activity and others.

The contributions of this paper are summarized as follows:
(i) A novel data collection process in a real-world urban field
that involves a large spectrum of physical and virtual sensors
in a fine-grained real-time mobile data collection process. (ii)
The applicability of data science techniques for improving
the quality of Smart City data collected via the Internet of
Things. (iii) The mapping of citizens’ perception onto several
measurable urban indicators. (iv) A deeper understanding
of urban qualities by mining spatial correlations of sensor
measurements, the similarity of urban spaces and the similarity
of citizens’ groups from sensor data.

This paper is organized as follows: Section II compares
the work of this paper with earlier related work. Section III
illustrates the experimental methodology in a real-world urban
field including information about the virtual sensors involved
and methods of data localization. Section IV evaluates the
collected data and studies the spatial correlation of the different
sensor measurements. It also illustrates a method to measure
the spatial and citizens’ similarity. Finally, Section V concludes
this paper and outlines future work.

II. RELATED WORK

The experiment conducted in this study is designed as a
follow-up to previous urban morphology perception studies,
which explored the dynamics between urban spatial configu-
rations and experiential qualities of space by inhabitants. This
is of particular interest for urban planners due to the long-term
nature of urban development decisions for street networks and
building layouts. It is therefore important to further understand
what types of public space promote desirable experiences.
This is explored in an earlier study [5], which evaluates
the relationships between urban spatial configurations along a
select street network and subjective impressions through survey
responses. Another study [6] follows a similar methodology
but also includes physiological response data from participants
using biofeedback wristbands.



Urban morphology as it is referred to in urban planning,
is commonly represented through space syntax centrality mea-
sures and isovist properties. Space syntax analysis character-
izes global spatial features such as visual access and accessi-
bility between locations [7]. While isovist analyses quantifies
local spatial features experienced from a given vantage point
in space [8]. The studies conducted by [5], [9], [10] indicate
that spatial qualities based on isovist analysis are linked to
subjective experiences. In particular, the subjective experiences
from the survey responses are statistically grouped into three
categories: appeal (APP), experience (EXP) and activity (ACT)
in the study performed by [5].

These experiments gather insightful information about ex-
periential qualities of urban neighborhoods, but have yet to find
a direct correlation between certain spatial configurations and
positive or negative subjective ratings. For example, the study
by [5] indicates that negatively rated areas are predominantly
located in high traffic zones, while positively rated areas occur
in pedestrian friendly zones. However both lack of contextual
information about external environmental conditions such as
temperature, noise, cloud cover, and people density, to show
whether these also influence the rated experiences. Therefore,
this work uses sensor-based environmental data to further
explain whether environmental stress indicators, such as loud
noise or levels of pollution are also associated with urban
perception.

The experiment conducted in this study was originally
designed to test the following hypotheses: Participants have
a higher likability for spacious environments compared to nar-
row configurations as shown through subjective appraisal ques-
tionnaires, and irrespective of external conditions as shown
through environmental sensor data. The results show that order
and context highly influence subjective experience, and that
it is less dependent on spatial configuration. In particular, the
narrowest configuration (pathpoint 7) has the highest subjective
rating along the experimental path, but shows to be the most
ordered in terms of urban morphology and quite as measured
by the sensor data. However, the analysis conducted in this
paper goes a step further to investigate the complex dynamics
of the urban experience using all collected time-series, ge-
olocated data coupled with the subjective impression survey
ratings. Using data science techniques, the spatial correlation
of sensor measurements, as well as the spatial and citizens’
similarity are illustrated for all measurement pairs.

III. SENSING URBAN QUALITIES IN SMART CITIES

A data collection process is introduced that involves 37
participating citizens during the period 6th to 29th of April
2016. Sensing of citizens and their environment is performed
along a path in the urban neighborhood environment of Alt-
Wiedikon in Zurich, Switzerland, shown in Figure 1a and 1b.
The path is chosen based on the alternation between static
and dynamic urban features, however, emphasis is given on
having highly distinguishable number and quality of spatial
configurations, which change between narrow and spacious.
Four instances of this transition along the path are observed
in Figure 2.

Data were collected from six devices: (i) a biofeedback
wristband, (ii) a WiFi receiver, (iii) a gas/environment sensor-
board, (iv) temperature, relative humidity, illuminance sensor,

(a) Selected pathpoints forming the
path.

(b) Selected path in satellite view.

(c) Greenery detection in the overall
area.

(d) Greenery detection along the path.

Fig. 1. Pathpoints and greenery detection.

(v) GNSS device and (vi) a survey application on a smart
phone. Each participant had to walk along the given path
wearing the biofeedback wristband and carrying a “sensor-
rucksack” equipped with mobile sensors. Each participant
was accompanied by the same experiment moderator, who
instructed them to respond to the mobile survey application
at each of the 14 checkpoints along the path. This serves the
purpose of removing the navigation duty from participants and
shifts focus entirely on the designed experimental process.
Completing the walk along the path required approximately
20-30 minutes depending on the casual walking pace of each
participant.

At each of the 14 checkpoints along the path, the par-
ticipants answer the mobile phone survey, shown in Figure 3,
containing 12 qualitative questions to evaluate the environment
they stand and experience. The purpose of the survey is
to provide additional contextual labeling information to the
sensor data collected and make the collected dataset more
personalized. Table I illustrates the qualities rated on a five-
point scale using survey questions appearing in mobile phones.

Table II illustrates the sensors from which measurements
are recorded. The number of WiFi devices detected is used
as an indicator of how populated is the environment and is
referred to as people density (PD). The differential of the
values collected from certain sensors is computed to measure
change in values, rather than the actual values.

Table III illustrates the frequencies of data collection. A
frequency reduction from 64 Hz and 4 Hz to 1 Hz is applied
to the blood volume pressure (BVP) and electrodermal activity
(EDA) respectively that are higher than the main frequency



TABLE I. QUESTIONS AND RANGES OF RATINGS FROM WHICH CITIZENS MAKE SELECTIONS. THE VIRTUAL SENSOR USING EACH QUESTIONS IS
INDICATED.

Question # 1 2 3 4 5 6
Question Range Beautiful Ugly Empty - Crowded Familiar - Unfamiliar Interesting Boring Light - Dark Like - Dislike
Used in virtual sensor: APP - APP ACT ACT APP

Question # 7 8 9 10 11 12
Question Range Open - Enclosed Ordered Chaotic Public Private Quiet Noisy Secure - Insecure Spacious Narrow
Used in virtual sensor: ACT APP APP EXP EXP EXP

(a) Pathpoint 2, narrow (b) Pathpoint 3, spacious

(c) Pathpoint 4, narrow (d) Pathpoint 5, spacious

(e) Pathpoint 7, narrow (f) Pathpoint 8, spacious

(g) Pathpoint 10, narrow (h) Pathpoint 11, spacious

Fig. 2. Four instances of narrow-spacious spatial configurations and their
corresponding pathpoints along the select path.

selection of 1 Hz. The average of 4 measurements is applied
to the electrodermal activity (EDA) sensor since it is not an
oscillatory value. The frequency of the blood volume pressure
(BVP) is decreased by sampling the average of the 1st minute
and subtracting this average from each raw value. At the final
stage, the absolute values of the signal are derived. Figure 4
illustrates an example of the frequency reduction applied to a
signal of blood volume pressure (BVP).

Fig. 3. The mobile app with the 12 criteria.

TABLE II. SENSORS FROM WHICH MEASUREMENTS ARE RECORDED.
A SENSOR WITH A SECOND ACRONYM STARTING WITH ‘d ’ IS THE

DIFFERENTIAL OF THE ORIGINAL ONE. THE SENSORS IN THE GREY BOXES
ARE VIRTUAL SENSORS.

Acronym Sensor description
PP Path Point

HR, dHR Heart Rate
BVP, dBVP Blood Volume Pressure

EDA, dEDA Electrodermal Activity
T-BF, dT-BF Bio Feedback Temperature

S, dS Sound
D, dD Dust

T-EN, dT-EN Environmental Temperature
RH, dRH Relative Humidity

IL, dIL Illuminance
ACC, dACC Acceleration

PD People Density
LON Longitude
LAT Latitude
GR Greenery

APP Appeal
ACT Activity
EXP Experience

SL Stress Level

A. Virtual sensors

A virtual sensor is defined in this paper as non-physical
sensor computed as a function of original measurements made
from several physical sensors or survey answers. Three virtual
sensors are discussed: (i) greenery (GR), (ii) appeal (APP),
(iii) activity (ACT), (iv) experience (EXP) and (v) stress (SL).

Figure 1c illustrates the greenery (GR) detection performed
over Google Earth satellite pictures around the area of the path.
The greenery is detected by analyzing the RGB values of the
pixels using the C++ library “CImg”. Green pixels due to noise
are excluded by checking cross neighbor pixels to classify the
tested green pixels as true or false positive. The mapping of the
GPS coordinates of the selected path to pixels is performed by
converting WGS84 spherical coordinates of the GNSS receiver



TABLE III. DATA COLLECTION FREQUENCIES.

Sensor description Frequency [Hz]

Heart rate (HR) 1

Blood volume pressure (BVP) 64

Electrodermal activity (EDA) 4

Biofeedback temperature (T-BF) 1

Sound level (S) 0.3

Dust (D) 0.3

Environment temperature (T-EN) 1

Relative humidity (RH) 1

Illuminance (IL) 1

People density (PD) 1 (if many), 0.024 (if few)

Longitude (LON) 1

Latitude (LAT) 1

Survey answers In each of the 14 checkpoints

(a) Raw signal. (b) Signal after adding average offset.

(c) Absolute positive signal.

Fig. 4. Frequency reduction applied to the bloom volume pressure measure-
ments.

to the CH1903 planar coordinates and rescaling to the local
pixel coordinates of the satellite pictures [11]. Measurements
of greenery along the path are performed by recording the
percentage of green pixels detected within a circle of 25 meters
radius across each point of the path. Figure 1d shows the
greenery detection along the path.

The virtual sensors of appeal (APP), activity (ACT) and
experience (EXP) are formed from a subset of the survey
questions as indicated in Table I. They specify features for the
quality of the perceived urban environment. The three virtual
sensors are documented in earlier work [5]. Each virtual sensor
vj provides a measurement at path point j given as follows:

vj =

k∑
i=1

wi(qi,j + 2)

k
, (1)

where k is the number of questions, qi,j ∈ [−2, 2]] is the

answer of a citizen in question i at path point j and wi is a
factor that weights the answer of a certain question i. Within
the scope of this project, all questions are equally weighted.

The virtual sensor of stress (SL) is formed by the physical
sensors of the biofeedback wristband, except the blood volume
pressure (BVP) that generates highly noisy data. It represents
the influence of the urban environment on the physical body
activities of the citizens. Measurements of stress are evaluated
in relation to a baseline that involves three-minute biofeedback
wristband readings to obtain the low stress level frequency of
each participant before the beginning of the experiment. The
stress level is computed as follows:

vj =

l−1∑
i=1

wisi,j
l − 1

, (2)

where l is the number of biofeedback sensors, si,j is the
normalized value of the biofeedback sensor i at path point
j and wi is a factor that weights the normalized value of
the sensor i. Within the scope of this project, all biofeedback
sensor values are equally weighted.

B. Data localization

Given that citizens participated in the experiments at dif-
ferent time points, the sensor data are studied in the spatial
domain, meaning the path, which is fixed for all citizens.
The sensor readings are geolocated by the GNSS devices,
which however introduce some significant inaccuracies and
mismatches of the localization on the path. Corrections are
made by introducing heuristic algorithms that traverse the path
points and associate each path point with the geolocated sensor
data that are at some shortest distance to this path point. Three
algorithmic methods are tested: (i) circular, (ii) elliptical and
(iii) minimum distance. Figure 5 illustrates the concept of each
method.

The circular method defines a circle with certain radius
around each point on the path. The average of the sensor data
in the circle is determined as the sensor data of this pathpoint,
unless no sensor data fall into the circle. In the latter case, the
radius exponentially increases by 10% until sensor data are
found. Algorithm 1 illustrates the circular method.

The elliptical method is similar to the circular method.
Instead of a circle, an ellipse is used around each point in
the path with a = 3 meters and b = 12 meters. The shortest
axis of the ellipse points to the direction of the next point in the
path, with the longest axis perpendicular to the shortest one.
The size of the ellipse increases 10% as long as no geolocated
sensor data are enclosed. Algorithm 2 illustrates the elliptical
method.

The minimum distance method associates each geolocated
sensor data to the point on the path at the shortest Euclidean
distance. If several geolocated sensor data are associated with
one pathpoint, the mean of the sensor data is computed. An
artifact of this method is that it may leave points on the
path without sensor data. Algorithm 3 illustrates the minimum
distance method.



Path points
Geolocated sensor data

Radius

(a) Circular method

Path points
Geolocated sensor data

b

a

(b) Elliptical method

Path points
Geolocated sensor data

(c) Minimum distance method

Fig. 5. Three data localization methods.

Algorithm 1 The circle method for data localization
Require: path points, geolocated sensor data

1: for each consecutive path point do
2: r = 5m , c = 1 and i = 0
3: repeat
4: for every geolocated sensor data do
5: calculate distance d between path point and geolocated sensor

data
6: if d ≤ r · c then
7: add geolocated sensor data to path point
8: i++
9: end if

10: end for
11: if i = 0 then
12: c = c · 1.1
13: end if
14: until i 6= 0 or c ≥ 10
15: if i 6= 0 then
16: get average of added geolocated sensor data
17: end if
18: end for

Algorithm 2 The ellipse method for data localization
Require: path points, geolocated sensor data

1: for each consecutive path point except the last one do
2: get ~n1 to next path point and the ~n2 perpendicular to ~n1

3: a = 3m for ~n1, b = 12m for ~n2, c = 1 and i = 0
4: repeat
5: for every geolocated sensor data do
6: calculate distances d1 and d2 between path point and geolocated

sensor data in ~n1 and ~n2

7: if d21
c·a2 +

d22
c·b2 ≤ 1 then

8: add geolocated sensor data to path point
9: i++

10: end if
11: end for
12: if i = 0 then
13: c = c+ 0.1
14: end if
15: until i 6= 0 or c ≥ 10
16: if i 6= 0 then
17: get average of added geolocated sensor data
18: end if
19: end for

IV. EVALUATION

The goal of the evaluation is to show how the sensor mea-
surements can reveal the urban characteristics and perceptual
experiences of the participating citizens traversing the urban
path. Moreover, the evaluation aims at showing the spatial
similarity as well as citizen group similarity using sensor

Algorithm 3 The lowest distance method for data localization
Require: path points, geolocated sensor data

1: for each geolocated sensor data do
2: find path point with the lowest Euclidean distance
3: add geolocated sensor data to path point
4: end for
5: for every path point do
6: get average of added geolocated data
7: end for

measurements.

The sensor values are normalized by dividing with the
mean of all data points for each participating citizen. The
python library scikit-learn1 is used to implement the clustering
algorithms for measuring the spatial and citizens similarity.
The elliptical method is used for the data localization given
that it provides higher accuracy than the cyclical method and
associates geolocated sensor data to all pathpoints, in contrast
to the minimum distance method. Moreover, the elliptical
method can better tolerate signal reflections on walls that are
usually perpendicular to the path for a citizen walking between
buildings [12]. Exact quantitative results for the accuracy of
each of the data localization methods are out of the scope of
this paper.

A. Spatial sensing and mining

Figure 6 illustrates the sensor values among the check-
points of the path. For each checkpoint, all sensor values
of the citizens from the previous to the next checkpoint are
averaged out. The biofeedback sensor values are shown in
Figure 6a. The biofeedback temperature (T-BF) and heart rate
(HR) remain at the same level over the path. However, the
electrodermal activity significantly increases towards the last
checkpoints of the path that indicate high moisture levels
originated from sweating. The cause of this effect is subject
of further investigation in future work and may be related to
exposure in environmental noise, a biological function or the
process of the experiment itself [13], [14], [15].

Figure 6b shows the environmental sensors. The sound
(S) level is the highest at checkpoint 11 and 12 that are in
crossroads of high traffic as can be seen in Figure 2. The dust
(D) shows similar values with the sound. The environmental
temperature (T-EN) does not vary significantly over the path.

1Available at http://scikit-learn.org/stable/ (last accessed: October 2016)



(a) Biofeedback sensors

(b) Environmental sensors

(c) Virtual sensors

Fig. 6. Normalized sensor values among checkpoints.

In checkpoints 1, 2, 8, 12, and 13, the illuminance (IL) is
higher than in the other checkpoints. Finally, checkpoint 8 has
the highest people density (PD).

Figure 6c shows the virtual sensors. Checkpoints 3, 4 and 7
have the highest appeal (APP) and activity (ACT). The park in
checkpoint 3 may explain the high values in these checkpoints
as shown in Figure 2. Checkpoints 3, 8 and 11 have the highest
experience (EXP) values. The stress (SL) level is relatively
stable, thus only a slight increase is observed as the path is
traversed.

Figure 7 illustrates the standard deviation of the sensor
values among the checkpoints and pathpoints after averaging
out the sensor values over the citizens. Figure 7a shows the
biofeedback sensors. The electrodermal activity (EDA) has
the highest standard deviation as it significantly increases
along the path. In the environmental sensors of Figure 7b, the
illuminance (IL) and people density (PD) vary the most along
the path. Among the virtual sensors of Figure 7c, the appeal
(APP) and experience (EXP) show the highest deviation.

B. Correlation of sensor measurements

Figure 8 illustrates the correlation coefficient matrix of all
pair combinations of data streams, averaged out over the partic-
ipants. Figure 8a and Figure 8b show the same measurements,
however, in different color mappings used as thresholds to
depict and distinguish positive from negative correlations. In
Figure 8a the thresholds are ±0.5 and in Figure 8b ±0.2. The
correlation coefficient matrix shows which measurement pairs
of sensors reflect correlated changes in the urban environment.

Figure 8b shows positive correlations in (i) acceleration
(ACC) - electrodermal activity (EDA), (ii) acceleration (ACC)
- sound (S), (iii) acceleration (ACC) - stress level (SL), (iv)
stress level (SL) - electrodermal activity (EDA) and (v) appeal
(APP) - activity (ACT). These results indicate that acceleration

(a) Biofeedback sensors

(b) Environmental sensors

(c) Virtual sensors

Fig. 7. Standard deviation of the normalized sensor values over pathpoints
and checkpoints.

(a) Color mapping thresholds at±0.5. (b) Color mapping thresholds at
±0.2.

Fig. 8. Correlation coefficient of all pair combination of the different data
streams.

influences biofeedback measurements and citizens perceive
an appealing urban environment as one with high activity,
presumably because of the high values that green areas such
as parks receive. Negative correlations are observed in (i)
biofeedback temperature (T-BF) - acceleration, (ii) biofeed-
back temperature (T-BF) - stress level (SL), (iii) biofeedback
temperature (T-BF) - electrodermal activity (EDA) and (iv)
relative humidity (RH) - environmental temperature (T-EN). A
plausible explanation of the first three negative correlations is
an increased moisture levels from sweating, however, further
evaluation through decomposition of all biofeedback data is
part of future work. The negative correlation between relative
humidity and environmental temperature is documented in
earlier work [16] and it is expected for the temperate climate
of Zurich.

C. Spatial and citizens similarity

Figure 9 illustrates the mean jaccard index between all pairs
of clusters computed by all pair combinations of the different
data streams. The jaccard index is computed by the intersection



of the clusters between a pair of data streams divided by their
union and is used in this section as a measure of similarity [17].
Clusters are computed with DBSCAN [18] with the number of
clusters estimated with the reduce and enlarge methods2 in the
range [2, 9]. The clusters either contain (i) the path points or
(ii) the participating citizens. The jaccard index measures the
spatial similarity in the former case and the citizens’ similarity
in the latter case, using the sensor data streams pairs as input.

Figure 9a and 9b show the spatial similarity computed
by the pairs of data streams among pathpoints. By looking
at the reduce method, high spatial similarities are observed
in the following pairs of sensors: (i) heart rate (HR) - stress
level (SL), (ii) appeal (APP) - experience (EXP) and (iii) heart
rate (HR) - biofeedback temperature (T-BF). Figure 9c and 9d
show the citizens’ similarity computed by the pairs of data
streams among citizens. By looking at the reduce method, high
citizens’ similarity is also observed in heart rate (HR)-stress
level (SL) and between the differentials of the environmental
temperature (dT-EN), relative humidity (dRH) and illuminance
(dIL).

(a) 40 minimum samples/cluster, en-
large method, spatial similarity.

(b) 40 minimum samples/cluster, re-
duce method, spatial similarity.

(c) 2 minimum samples/cluster, en-
large method, citizens’ similarity.

(d) 2 minimum samples/cluster, re-
duce method, citizens’ similarity.

Fig. 9. Mean jaccard index between all pairs of clusters computed by all
pair combinations of the different data streams. Clusters are computed with
DBSCAN with the number of clusters in the range [2, 9]. The spatial similarity
is computed by the pairs of data streams among pathpoints and citizens’
similarity among group of citizens.

Figure 10 illustrates the mean jaccard index between all
pairs of clusters computed by all pair combinations of the
different data streams. Clusters are computed with k-means.
The number of clusters are detected by running the EM
algorithm [19] by executing 100 iterations with 10 folds in
cross-validation. The value of 1.0E-6 is used for the minimum

2The reduce method incrementally decreases the ε value by 0.1 and
evaluates the DBSCAN, resulting in minimum number of clusters possible
within the given boundaries. The enlarge method follows the same process
but increases the ε value resulting in maximum number of clusters possible
within the given boundaries.

improvement in cross-validated log likelihood required to con-
sider increasing the number of clusters and another iteration of
the E and M steps as well as the minimum allowable standard
deviation of normal density computation. Further validation
with state-of-the-art validation indices [20] are out of the scope
of this work given that this paper does not focus on k-means
entirely. The spatial similarity is computed by the pairs of data
streams among pathpoints. The citizens’ similarity is omitted
here due to its low number of data samples. Compared to
DBSCAN in Figure 9, k-means shows increased similarity
in the low similarity values of the DBSCAN, which is to
be expected given that k-means is more sensitive to outliers
and noise. However, DBSCAN shares the same high similarity
pairs with k-means.

Fig. 10. Mean jaccard index between all pairs of clusters computed by all
pair combinations of the different data streams. Clusters are computed with k-
means with the number of clusters detected by running the EM algorithm. The
context similarity is computed by the pairs of data streams among pathpoints.

V. CONCLUSION AND FUTURE WORK

This paper concludes that sensing and mining data from
urban environments equipped with the Internet of Things can
provide new insights about urban qualities that can turn them
into Smart City enablers. A broad spectrum of environmental
information, biofeedback information and urban perceptual
qualities can be measured in real-time via a novel data col-
lection process in a real-world urban field that involves a
broad spectrum of physical and virtual sensors. Data science
methods are employed to understand spatial correlations of
sensor measurements and the similarity of urban space and
citizens’ groups.

Future works includes the involvement of (i) a larger
populations of citizens, (ii) annotated data about the patterns of
users’ activities (iii) decomposition analysis of electrodermal
(EDA) data to determine phasic and tonic stress responses
from participants (iv) building use-type, population density,
and average income levels, (v) integration and comparison
with other urban models, e.g. large-scale urban energy demand
models and (vi) social interactions between the participating
citizens to gain a deeper understanding of the dynamic urban
qualities emerging in Smart Cities. A follow up of this study
is the actual implementation and large-scale deployment of
technology for sensing and mining several urban qualities
using modular virtual sensors [21]. Emphasis will be given
on privacy-preserving, participatory, ethical data collection and
analytics methodologies [22], [23] supporting more sustainable
and adaptive Smart Cities and digital societies [24].
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