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Abstract—The pervasiveness of Internet of Things devices in
techno-socio-economic domains such as Smart Cities and Smart
Grids results in a massive scale of data about our society.
Decision-making by system operators or policy-makers requires a
sophisticated understanding of these data with real-time data an-
alytics methods. However, common data analytics methods often
serve exclusively corporate and commercial interests and result
in privacy-intrusion, surveillance, profiling and discriminatory
actions. This paper illustrates an alternative data analytics ap-
proach that relies on participatory citizens to contribute Internet
of Things data and crowdsourced computational resources in
order to compute aggregation functions in a collective fashion.
This democratization calls for a fully decentralized and privacy-
preserving system design with which a local data management
mechanism implemented in smart phones can guarantee highly
accurate computations under highly dynamic data streams. Ex-
perimental evaluation with real-world Smart Grid data illustrates
the performance trade-offs and shows how they can be managed
in an automated and empirical way using decision trees.

I. INTRODUCTION

The massive expansion of data collection sources from
Internet of Things devices such as pervasive and ubiquitous
sensors in the context of Smart Cities, wearables and smart
phones [1] brings unprecedented opportunities to reason about
our society based on data-driven empirical evidence. Internet
of Things data analytics has turned out to be a tactical utility
to turn tremendous scales of massive unstructured data to
economic merchandises and services with implications in the
societal, environmental, economic and political arena. Un-
avoidably, the question here is if practices of existing data
analytics contribute to the sustainability of digital societies.
Challenges such as privacy-intrusion, surveillance and discrim-
ination data analytics algorithms using personal data [2] can
put the cohesion of society into question.

A democratization of data analytics in the Internet of
Things era can turn data analytics into a public good to
tackle the aforementioned challenges [3]. This requires a shift
from an exclusively commercial scope to a broader scope in
which participating citizens contribute computational resources
and data in a more ethical way than existing data collection
practices do. To make this happen, a fundamentally different
engineering design is required that goes beyond distributed
models such as MapReduce [4], [5], [6] running in large
and expensive computational machines centrally managed by
stakeholders with entirely commercial interests.

This paper illustrates a fully decentralized privacy-
preserving data analytics system for the Internet of Things.

Given the well documented challenge and complexity to
design, deploy and manage such scalable systems [7], [8],
this paper focuses on the problem of dynamic decentralized
aggregation of Internet of Things data: citizens using pervasive
and ubiquitous devices act as data suppliers and consumers
generating streams of real-time privacy-sensitive data, for in-
stance, sensor data from mobile devices or power consumption
data from residential smart meters. Citizens are incentivized
to contribute some of these dynamically changing data they
collect to get collective information in return, such as traffic
congestion information or status updates of the Smart Grid
reliability [9]. This information is the output of aggregation
functions, such as SUMMATION, AVERAGE, MAXIMUM, MIN-
IMUM, TOP-K, computed via peer-to-peer interactions within
a decentralized network of crowdsourced computational re-
sources. The focus of this paper is the decentralized and
privacy-preserving computation of aggregation functions under
highly rapid changes of input data from the Internet of Things
that challenges the cost-effectiveness of any decentralized data
management system.

This paper contributes a local data management mech-
anism, implemented as an app on smart phones for proof
of concept, that can guarantee high aggregation accuracy
under highly entropic data streams that challenge the con-
tinuous update in the estimation of aggregation functions.
Experimental evaluation with real-world data from the domain
of Smart Grids contributes novel quantitative findings about
performance trade-offs, such as privacy vs. accuracy vs. com-
munication cost, which confirm the feasibility of the proposed
data analytics approach. This paper also illustrates a data-
driven decision support method based on decision trees for
regulating the performance trade-offs in an automated fashion
by exclusively using high-level parameters.

The remainder of this paper is organized as follows:
Section II introduces a data management model for Internet
of Things devices that can perform a fully decentralized
aggregation of dynamic sensor data. Section III illustrates the
experimental evaluation. Section IV compares the work of this
paper with related work. Finally, Section V concludes this
paper and outlines future work.

II. DECENTRALIZED AGGREGATION IN THE INTERNET OF
THINGS

This paper studies the applicability of a fully decentralized
data analytics system for the Internet of Things. Pervasive and
ubiquitous devices participate as data suppliers and consumers.



Data suppliers are sensors that locally generate a stream of
real-time data, while data consumers are devices that require
access to collective information computed by aggregation and
advanced analytics over the sensor data. This paper focuses on
aggregation functions such as AVERAGE, SUMMATION, MAX-
IMUM, MINIMUM, STANDARD DEVIATION and TOP-K that
are typically challenging to compute in a fully decentralized
networked environment. The computational problem is also
know as ‘in-network aggregation’.

Data suppliers and consumers interact with a fully de-
centralized aggregation network built by the computational
resources of participatory citizens. Such a network can be
formed by the citizens themselves as done in the case of the
diaspora decentralized social network that consists of several
distributed servers referred to as pods maintained by the user
community [10], [11]. Moreover, Do-It-Yourself decentralized
networking [12], [13] can be applied in “offline” local area
networks using wireless technology that provides coverage
at a level of a neighborhood up to the level of a whole
city, as in the case of LoRaWAN [14]. There is also the
option to bootstrap such decentralized networks for Internet
of Things data analytics with peer-to-peer clients such as the
ones developed for Bittorrent [15].

For the purpose of illustration and analysis, the following
simple, yet challenging, distributed scenario is studied: every
data supplier comes along with a data consumer. Each pair
of them is connected to a different node in the aggregation
network. The data supplier and consumer for each node are
assumed to be located in a citizen’s device such as a smart-
phone or a home gateway that, for example, sends and receives
power consumption data. Figure 1 illustrates the studied model.
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Figure 1. Decentralized in-network data aggregation for the Internet of
Things. Pervasive and ubiquitous devices locally generate data that are sent to
a node in the aggregation network with which they are connected. Aggregation
functions for the same type of data are computed and the aggregate results
are sent back to the devices.

A. Decentralized data aggregation

This paper employs DIAS, the Dynamic Intelligent Ag-
gregation Service for the computation of aggregation func-
tions [16]. DIAS can perform decentralized privacy-preserving
data analytics as it relies on local computations, peer-to-peer
interactions and hashed information. It is applicable in the
context of the Internet of Things given that it can manage
dynamic input data streams from sensors as it is shown in this
paper. Although input sensor data rapidly change and introduce
errors to the actual true values of the computed aggregation
functions, DIAS is designed to perform automated and contin-
uous self-correcting operations that maintain a high accuracy in
the estimations of the aggregation functions. Moreover, DIAS
can compute a wide spectrum of aggregation functions such

as AVERAGE, SUMMATION, MAXIMUM, MINIMUM and STAN-
DARD DEVIATION without any change in its core mechanism.

Figure 2 illustrates the main components and interactions
of the DIAS aggregation service. Each node i of the DIAS
network can contain a disseminator di and/or an aggregator
ai. The disseminator is the agent with which the data supplier
is connected to, whereas the aggregator is the agent with which
the data consumer is connected to. Disseminators discover
aggregators in the network to which they send their local
sensor data. Discovery is performed via a fully decentralized
gossiping protocol, the peer sampling service [17] in which
aggregators publish themselves and disseminators sample ag-
gregators published. Disseminators classify and cache aggre-
gators sampled from the peer sampling service in a pool of
limited size and spread the local sensor data in the network
periodically by pushing them to remote aggregators from the
pool. Aggregators collect the input data for the computation
of the aggregation functions. Disseminators pull back infor-
mation about the outcome of the performed aggregation. Each
bilateral peer-to-peer interaction between a disseminator and
an aggregator is referred to as an aggregation session. There
are multiple parallel aggregation sessions performed during the
runtime of DIAS.
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Figure 2. Overview of the DIAS main components and interactions. A
disseminator di contains the possible states and the selected state. It has
a memory system based on simple and counting bloom filters [16] that
are used to classify aggregators as exploited, unexploited or outdated. The
aggregators are sampled from a decentralized gossiping protocol, the peer
sampling service [17]. An aggregator aj shares part of the distributed memory
system that is based on simple and counting bloom filters. It computes several
aggregation functions, whose results are made available to data consumers of
Internet of Things applications. The remote aggregators and disseminators in
the DIAS network perform aggregation sessions, each of which consists of
two messages exchanged in a push-pull peer-to-peer fashion.

The two main outcomes of each aggregation session are
the following: (i) exploitation, during which a first contact
with a certain disseminator is performed and therefore new
input data are counted in the aggregation functions, and (ii)
update, during which a contact with a certain disseminator
is repeated to encounter changes occurred in the earlier data
received. The updates are the means to apply the self-corrective
operations on the computation of the aggregation functions.
Determining these two outcomes requires that DIAS agents
have some memory with which they can distinguish (i) the
interactions and (ii) the data received. A detailed illustration
of the intelligent memory system of DIAS is beyond the
scope of this paper and explained in more detail in earlier



work [16]. However it must be underlined, that the memory
system relies on the probabilistic data structures of simple
and counting bloom filters, whose consistency is maintained
in a fully distributed way using exclusively the interactions
of an aggregation session. A remote pair of simple bloom
filters1 keeps information about the mutual interactions of
disseminators-aggregators, and a set of other remote count-
ing bloom filters2 keeps information about the mutual data
exchanged for aggregation.

The main data abstraction model of DIAS is the concept
of possible states. Each disseminator i in the network has a
sequence of k possible states Pi = (pi,u)

k
u=1. Moreover, each

disseminator i has one and only one selected state pi,s ∈ Pi,
which is the one that is counted as input in the aggregation
functions. A disseminator can change its selected state for
another possible state any time during its operation. The actual
value of an aggregation function is computed for n nodes in the
evaluation as f(p1,s, ..., pn,s), whereas the aggregate estimated
by DIAS is notated as f(p1,s, ..., pn,s).

Algorithm 1 illustrates the active thread of a disseminator
di executed periodically with period T (line 2). The dissemi-
nator samples (line 3) from the peer sampling service a set of
aggregators A that classifies (line 4) in the aggregation pool as
(i) exploited, (ii) unexploited or (iii) outdated. Exploited are the
aggregators with which the disseminator has already interacted
and aggregated their current selected state, in contrast to
the unexploited ones with which the disseminator has not
interacted. The disseminator has interacted with the outdated
aggregators, however, they have aggregated a different possible
state than the current selected one. These distinctions are made
by querying the bloom filter memory system. An aggregator aj
is selected from the pool to initiate an aggregation session (line
5). Selection is made based on a strategy s that gives priority to
either unexploited or outdated aggregators. These two priority
schemes are the (i) exploitation and (ii) update strategies. A
memory report md is formed by querying the bloom filters for
the selected aggregator (line 6) that is wrapped into a ‘push’
message together with the possible states and the selected state.
The message is sent to the selected aggregator aj (line 7).

Algorithm 1 Active thread of disseminator di.
Require: Strategy s

1: loop
2: wait(T )
3: A=service.sample()
4: pool.classify(A)
5: aj=pool.select(s)
6: md=memory.recall(aj)
7: send(‘push’,di,md,Pi,pi,s) to aj

8: end loop

Algorithm 2 illustrates the passive thread of the aggregator
aj listening to ‘push’ messages. When such a message is
received, the aggregator recalls from its bloom filter memory
information about the disseminator di to validate3 whether

1These are the Aggregator Memberships in Disseminator (AMD) and the
Disseminator Memberships in Aggregator (DMA).

2These are the Aggregator Memberships in Selected states (AMSs) and the
Selected state Memberships in Aggregates (SMA).

3This validation performs a consistency check for false positives that bloom
filters can generate.

the classification to unexploited or outdated performed by the
disseminator di is correct (line 1). The outcome of this memory
recall is the aggregator report ra. Then the aggregation process
starts by updating the memory system (line 2) and computing
the aggregation functions (line 3). Finally, a ‘pull’ message
is sent back to the disseminator di containing the aggregator
report ra (line 4).

Algorithm 2 Passive thread of aggregator aj .
Require: ‘push’,di,md,Pi,pi,s

1: ra=memory.recall(di,md)
2: memory.memorize(md)
3: aggregate(pi,s,Pi,ra)
4: send(‘pull’,aj ,ra) to di

The ‘pull’ message is processed by the passive thread of
the disseminator di illustrated in Algorithm 3. The processing
involves the update of the memory system (line 1) for the
consistency of the future generated disseminator reports and
the classifications of aggregators in the aggregation pool.

Algorithm 3 Passive thread of disseminator di.
Require: ‘pull’,aj ,ra

1: memory.memorize(ra)

Figure 3 visualizes the operation of DIAS with execution
period T = 1 second that is the duration of an epoch
measuring the DIAS runtime. The execution period of the peer
sampling service is T/4. The extreme scenario in which every
node of the network has an aggregator and a disseminator
is studied. After a bootstrapping period of 13 epochs, the
connections of the peer sampling service are established as
shown in Figure 3a-b. The aggregation pool of disseminators
is filled with several unexploited aggregators and all nodes
start establishing several aggregation sessions as shown in
Figure 3c-f. Figure 3g-l shows that after the first iterations, the
number of aggregation sessions decreases as fewer and fewer
unexploited aggregators fill the aggregation pool. Dissemina-
tors do not change their selected state and the network size
remains constant. The estimation of the aggregation functions
converges to the actual values.

B. Data management for the Internet of Things

Sensors generate streams of real-time data referred to in
this paper as raw data. For example, a smart meter may
measure the energy consumption of a household generating
a large number of positive real numbers. These numbers may
be privacy-sensitive. They can also significantly and rapidly
vary over time, which can turn the use of raw data as possible
states infeasible in DIAS. The DIAS nodes cannot handle
and even know all the possible values generated by a sensor.
Moreover, the selected states from the raw data change in real-
time as data are collected. This turns the self-correcting actions
of DIAS on the aggregation functions infeasible as well. In
addition, raw data are sensitive and the users of the devices
may be unwilling to permit these data leaving their devices
as a measure to preserve their privacy. It is concluded that
the privacy-sensitive, highly entropic and dynamic sensor data
generated from Internet of Things devices is the challenging
factor for performing truly decentralized data analytics, in
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Figure 3. Visualization of DIAS with 50 nodes, each having a disseminator and an aggregator. The dashed yellow lines indicate the connections established
by the peer sampling service, whereas the white and blue solid lines indicate the push-pull peer-to-peer messages of the aggregation sessions. The nodes are
colored red at the very beginning, indicating maximal errors in the computation of the aggregation functions. As more aggregation sessions are performed, the
nodes turn to green, indicating maximal accuracy by estimating the actual values of the aggregation functions correctly. DIAS eliminates the communication
cost as the accuracy increases and the disseminators communicate with all available unexploited and outdated aggregators.

DIAS and elsewhere. This section illustrates a solution to
address this challenge.

The proposed solution relies on a summarization unit that
transforms the raw data into a stream of selected states chosen
from a limited number of k possible states. This transformation
turns the raw data to the summarized data. The summarized
data are representative values of the raw data, and they can
be locally computed using data mining and machine learning
techniques applied on historical raw data [18]. For example,
instead of sending to DIAS the exact power consumption
readings from a smart sensor, a stream of three possible
values can be sent that represent the low, medium and high
power consumption profiles of a household. These profiles
can be extracted by clustering [19] historical raw data with
an algorithm such as k-means and using the centroid of
the clusters as possible states. This training process can be
repeated at much larger intervals than the data collection, e.g.
daily or weekly. A future raw data record ri generated by a
sensor can be tested in which cluster it belongs to by using a
distance measure such as the Euclidean distance. In this case,
the selected state is determined as follows:

s =
k

argmin
u=1

(|ri − pi,u|), (1)

where s is the index of the selected state pi,s ∈ Pi and ri is
the most recent raw data record generated from a sensor. The
summarized data have a lower information content than the
raw data and therefore a level of privacy is introduced.

The number of possible states is selected as a system
parameter controlling the storage and communication cost of
DIAS and the privacy-preservation by looking at the number of
possible states as the level of information reveal. The number
of possible states can be also selected in an automated fashion
via machine learning or data mining techniques. For example,

the expectation maximization (EM) algorithm [19] indicates
the number of clusters that best represents some given data.

Moreover, data suppliers may choose if they report every
change of the selected state to the DIAS network. This is a
way to control and regulate (i) the privacy-preservation, (ii) the
communication cost between devices and DIAS nodes and (iii)
the communication cost within DIAS. This is achieved with the
send factor (SF) that determines a repeated time period4 Ts in
which the selected states are sent to DIAS. For example, a send
factor of 3 means that the selected state is sent to DIAS every
3 ∗ T . Algorithm 4 illustrates how the send factor is applied
in the summarization unit of Internet of Things devices.

Algorithm 4 Influencing the reported selected state in DIAS
using the send factor.
Require: Ts, ri, Pi

1: t = 0
2: loop
3: wait(T )
4: t = t+ 1
5: if t = Ts then
6: s = argmink

u=1(|ri − pi,u|)
7: send pi,s
8: t = 0
9: else

10: skip sending pi,s
11: end if
12: end loop

The implementation of such a summarization unit depends
on the Internet of Things devices used and the application.
In devices with very low processing and power capacity, the
possible states can be preprogrammed and updated manu-
ally. An automated lightweight data analysis, e.g. frequen-
cies of the generated sensor values, is feasible in devices

4This period should be usually equal or larger than the main execution
period of DIAS.



with small processing units [20]. In devices such as smart
phones and larger smart sensor modules, more options are
available. Mobile phone frameworks such as Nervousnet [21]
or JAM [22] can efficiently manage sensor data and locally
perform lightweight data mining and machine learning to
transform raw into summarized data on a daily or weekly basis
as shown is Section III-A. There is also the option to deploy the
summarization unit on the DIAS node. The raw data need to be
transferred, given available bandwidth and security measures.

Figure 4 illustrates the data lifecycle in the proposed de-
centralized aggregation system for the Internet of Things. Data
suppliers generate raw data that are transformed to summarized
data with the summarization unit before they are used by the
DIAS network for aggregation. Finally, the DIAS nodes send
back aggregation data to data consumers.

Three types of relative errors are introduced within this
data lifecycle: (i) summarization error, (ii) DIAS error and
(iii) overall error. The summarization error is a result of
compressing the raw data to the possible states and introducing
the send factor that does not always send the selected state to
DIAS. It is computed for an aggregation function as follows:

εs =
|f(r1, ..., rn)− f(p1,s, ..., pn,s)|

|f(r1, ..., rn)|
(2)

From a privacy perspective, this error should be maximized,
however, the errors introduced at this stage unavoidably ac-
cumulate at the later stages. One relevant question studied
in Section III is how these local summarization errors accu-
mulated influence the global errors in the estimations of the
aggregation functions at the last stage given that these errors
may cancel out in aggregation. The DIAS error is influenced
by the complexity of the input data and system parameters
such as the communication frequency and the network size. It
is computed as follows:

εd =
|f(p1,s, ..., pn,s)− f(p1,s, ..., pn,s)|

|f(p1,s, ..., pn,s)|
(3)

The influence of system parameters is studied in earlier
work [16]. This paper studies the influence of the send factor
in the DIAS error as a measure of the data complexity in
aggregation. The overall error is the most critical one that
should remain minimal and is measured between the raw data
aggregated and the estimated aggregation data of DIAS:

εo =
|f(r1, ..., rn)− f(p1,s, ..., pn,s)|

|f(r1, ..., rn)|
(4)

The goal of this paper is to study the trade-offs between
the three errors and to illustrate how to creatively use the send
factor to regulate these trade-offs.

III. EXPERIMENTAL EVALUATION

The experimental evaluation has the following two objec-
tives: (i) show the feasibility of computing possible states in
Internet of Things devices such as smart phones and (ii) show
the feasibility of performing fully decentralized aggregation of

dynamic sensor data. These two contributions provide a proof-
of-concept at both a device (local) and network (global) level.

The former objective is studied by implementing an An-
droid app using the Nervousnet5 framework [21] that runs the
k-means clustering algorithm on smart phones. The centroids
of the clusters are the actual possible states, the summarized
data. The following historical sensor data are used as raw data:
(i) ACCELEROMETER, (ii) LIGHT and (iii) ACCELEROMETER-
LIGHT. The latter concerns a virtual sensor that combines the
sensor values of the former two. Therefore, a two-dimensional
clustering is performed in this case. A single-day sensor data
are collected at four different frequency periods: (i) 60 sec,
(ii) 30 sec, (iii) 10 sec and (iv) 1 sec. The performance is
measured by the average execution time over 30 repetitions.
The measurements are performed on three different phones:

Phone 1 Motorola XT1039 (Android 5.1)6.
Phone 2 Samsung SM-G920F Galaxy S6 (Android 6.0.1)7.
Phone 3 Samsung GT-19505 Galaxy S4 (Android 5.0.1)8.

For the latter objective, a Smart Grid scenario is emulated
using real-world data from the Electricity Customer Behavior
Trial (ECBT) pilot project9, which studies the electricity con-
sumption of residential consumers in Ireland. The project ran
during the period 2009-2010 with 6435 residential and small-
medium enterprise consumers, from which 3000 residential
consumers are used for the experiments. Consumption data
are collected from smart meters every 30 minutes. The data of
date 4.1.2009 are used for the experiments. The total records
of raw data used in the experiments are 2 records/hour*24
hours=48 records.

The data of ECBT are treated as the raw data. The
summarized data are derived by performing clustering with
k-means, where k = 5, using the Weka library10.

The centroid of the clusters are the possible states of
DIAS and the selected state is chosen every 30 minutes
using Equation 1. Several send factors are evaluated: (i) SF-
1, corresponding to sending the selected state every 1 epoch,
(ii) SF-2 corresponding to sending the selected state every 2
epochs, (iii) SF-4, (iv) SF-8, (v) SF-12, (vi) SF-16 and so
on. The estimated aggregates under different send factors are
compared to the ACTUAL aggregates computed by the selected
states without skipping changes in the selected states.

DIAS is implemented11 in Java and prototyped using
the Protopeer toolkit [23]. A Protopeer implementation12 of
the peer sampling service is used as well. Both DIAS and

5Available at: https://github.com/nervousnet (last accessed: October 2016).
6Specification available at http://www.knowreviewtip.com/specs-price/

moto-g-4g-lte-1st-gen-xt1039/ (last accessed: October 2016).
7Specification available at http://www.phonemore.com/phone/

samsung-galaxy-s6-sm-g920f-32gb/2043 (last accessed: October 2016).
8Specification available at http://www.gsmarena.com/samsung i9505

galaxy s4-5371.php (last accessed: October 2016).
9Available at http://www.ucd.ie/issda/data/

commissionforenergyregulationcer/ (last accessed: October 2017)
10Available at https://weka.wikispaces.com (last accessed: October 2016).
11An early implementation of DIAS can be accessed at https://github.

com/epournaras/DIAS (last accessed: October 2016). A latest implementation
including new features such as fault tolerance, new aggregation functions,
deployment support capabilities and other is available upon request.

12Available at https://github.com/epournaras/PeerSamplingService (last ac-
cessed: October 2016).
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Figure 4. The data lifecycle starting from data suppliers and ending with data consumers in the Internet of Things. Raw data are transformed to summarized
data resulting in a summarization error. Summarized data are used as input in the aggregation functions of DIAS to compute the aggregation data. The errors
between the actual summarized data aggregated and the estimated aggregation data is the DIAS error. The errors between raw data aggregated and the estimated
aggregation data in DIAS is the overall error.

peer sampling service are deployed in the Euler HPC cluster
infrastructure of ETH Zurich. The epoch duration is selected
as 30 minutes/14 DIAS executions=2.14 minutes (2.14/4=0.5
minutes for the peer sampling service). A high execution
rate of DIAS improves convergence speed but also increases
the communication overhead. It is a system parameter and
should be selected based on the available resources of the
infrastructure in which DIAS is deployed. Each of the 3000
nodes of DIAS are equipped with both a disseminator and an
aggregator to test the most demanding scenario. A maximum
of 40 aggregation sessions per epoch are initiated by each
disseminator. Each experiment runs for 800 epochs in total,
during which aggregation is performed in 14*48=672 epochs.
The first 100 epochs are used for system bootstrapping. The
results for the AVERAGE, SUMMATION and MAXIMUM aggre-
gation functions are presented.

A. Local computation of possible states

Figure 5 illustrates the computational overhead involved
in the computations of the possible states in three smart
phones. The following observations can be made: Increasing
the number of clusters from k = 3 to k = 5 increases the
average computational overhead for each phone by 57.38%,
44.56% and 44.23% respectively.

Phone 2 with 2.1 GHz CPU has the lowest average com-
putational overhead of 686.18 ms for k = 3 and 1061.38 ms
for k = 5. In contrast, the average computational overhead
increases in phone 1 with 1.2 GHz CPU to 1.59 sec and 3.11
sec respectively. For phone 3 with 1.9 GHz CPU the respective
numbers are 2.78 sec and 5.51 sec.

In all cases, the number of possible states can be computed
in a few seconds, which makes the proposed data management
model feasible for pervasive devices such as smart phones.

B. Errors, privacy and communication cost

Figure 6 illustrates the summarized data and summarization
errors for different send factors and aggregation functions. As

it can be seen in Figure 6a and 6c, SF-1 does not vary signifi-
cantly from the ACTUAL in AVERAGE and SUMMATION but it
does vary significantly from SF-4 and SF-12. In MAXIMUM,
the level of relative errors and the difference between the send
factors are lower than the other aggregation functions. The
errors are maximized when the level of energy consumption
changes rapidly, e.g. leaving and returning home.

Figure 7 shows the aggregation data and the overall errors
for different send factors and aggregation functions. With a
careful look and cross comparison with Figure 6, one can
identify the summarization and DIAS errors. For example, the
shift of SF-1 and SF-4 to the right is due to (i) the skipped
values as can be seen in Figure 6a, 6c and 6e and (ii) the
lag of the self-correcting computations in DIAS. The former
is clearer for SF-12 in which the steps created by the large
send factor are observable in the overall error. Moreover, SF-1
and SF-4 have similar errors as during the DIAS aggregation
summarization errors cancel out.

Figure 8 provides an overview of all errors averaged
for each send factor and aggregation function. This figure
shows some key observations: (i) the DIAS error decreases
44.46%, 55.93% and 32.55% for SUMMATION, AVERAGE and
MAXIMUM as the send factor increases from SF-1 to SF-16.
(ii) Each step increase in the send factor increases dramatically
the summarization error that finally overpasses the DIAS error.
(iii) The overall error remains on average the sum of its parts.
A distinguishable increase is observed in the high values of
send factors for the SUMMATION and AVERAGE.

Figure 9 illustrates the total communication cost for each
send factor. Intuitively, if a fewer number of changes in
the selected states are reported, then a lower communication
cost is imposed as a lower number of outdated aggregators
appear during runtime. The difference is critical with the
communication cost dropping 15.01% and 49.5% for SF-4
and SF-12 compared to SF-1.

C. Regulating the error trade-offs

The proposed decentralized data analytics system for In-
ternet of Things involves different actors that may have differ-
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(a) Phone 1, k = 3
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(b) Phone 1, k = 5
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(c) Phone 2, k = 3
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(d) Phone 2, k = 5
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(e) Phone 3, k = 3
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(f) Phone 3, k = 5

Figure 5. Performance overhead for the three different phones and two
different numbers of possible states.

ent requirements for each error involved in the aggregation
process. For example, the data suppliers such as users of
mobile phones may acquire maximal summarization errors for
privacy-preservation and minimal aggregation errors for high
quality of service. In contrast, the administrators or system
operators of the infrastructure in which DIAS is deployed
may require to keep a low bandwidth utilization and therefore
choose for the high errors introduced by high send factors. This
section illustrates an automated method for decision-making
support that encounters the different trade-offs between the
three involved errors.

Decision trees built by a Weka implementation of the
C4.5 algorithm [24] are used for the decision-making support.
Learning is performed by a 10-fold cross-validation of a
training set generated with different threshold combinations
of an α parameter under a step-wise increment of 0.001. The
weight α ∈ [0, 1] parameter is used as a tolerance preference
between two pairs of errors: (i) summarization vs. DIAS errors
and (ii) overall vs. DIAS errors. The selected send factor is
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(a) AVERAGE, summarized data
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(b) AVERAGE, summarization errors
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(c) SUMMATION, summarized data
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(d) SUMMATION, summarization er-
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(e) MAXIMUM, summarized data
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(f) MAXIMUM, summarization errors

Figure 6. Summarized data and summarizaton errors for different send factors
and aggregaton functions.

the one that minimizes the following equation in each case:

εs,d = aεs + (a− 1)εd, (5)

εo,d = aεo + (a− 1)εd. (6)

Figure 10 illustrates the decision trees computed.

The decision trees for AVERAGE and SUMMATION are
similar in each pair of errors given that they result in similar
error values as shown in Figure 8a, 8c, and 8b, 8d. They
involve the send factors SF-1, SF-2, SF-4 and SF-16 and
the first branching is performed for α ≤ 0.36 and α ≤ 0.4 for
each pair of errors respectively. In contrast the send factors
SF-1, SF-12 and SF-16 appear in the trees for MAXIMUM
with the respective first branching performed for α ≤ 0.45
and α ≤ 0.64 as shown in Figure 8e, 8f.
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(a) AVERAGE, aggregation data
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(b) AVERAGE, overall errors
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(c) SUMMATION, aggregation data
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(d) SUMMATION, overall errors
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(e) MAXIMUM, aggregation data
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(f) MAXIMUM, overall errors

Figure 7. Aggregation data and overall errors for different send factors and
aggregaton functions.

IV. COMPARISON WITH RELATED WORK

Data analytics systems can operate in commercial and cen-
trally managed computational resources or crowdsourced dis-
tributed resources collectively managed by citizens. Moreover,
data processing can be centralized using large and expensive
computational resources such as supercomputers and GPUs or
it can be performed in a distributed fashion among remote
and interactive computational resources. This section focuses
on systems and mechanisms, whose system design is fully
decentralized for both of the aforementioned aspects. This
focus underlines some significant work done for in-network
decentralized aggregation using gossiping protocols or tree
topologies and some more advanced gossip-based learning.

Gossip-based aggregation [25] provides fast computations
of certain aggregation functions in large-scale decentralized
networks. Gossiping requires a constant communication cost.
Given that convergence of the estimated aggregates to the
actual values occurs in a few algorithm repetitions, the com-

munication cost can be decreased with a stopping criterion.
However, it is a challenge to come up with a general stop-
ping criterion that works effectively for different network
settings and input data. Moreover, gossip-based aggregation
relies on the principle of variance reduction in each executed
step that limits the aggregation functions to the AVERAGE.
Other functions such as the MAXIMUM, MINIMUM, COUNT
and SUMMATION can be computed with variations such as
applying in the inverse birthday paradox and running multiple
instances of the protocol, in contrast to the proposed approach
in which a broad range of aggregation functions can be
computed within the main system operation. Moreover, gossip-
based aggregation protocols are not designed to work with
dynamic input values and therefore recomputations need to
be performed when any input data changes resulting in higher
communication costs and additional complexity for scheduling
recomputations. Because of these limitations, gossip-based
aggregation is often contrasted with aggregation over tree
topologies [26], [27] that can be more efficient, yet, trees
require building and maintenance [28] that can be costly in
distributed environments.

There are more recent efforts as well to overcome these
limitations of decentralized aggregation methods, however,
their applicability to Internet of Things remains a grand
challenge. TOP-K is studied under dynamic datasets [29]
and group-based aggregation is considered to improve effi-
ciency [30]. Synopsis diffusion can perform duplicate-free
data aggregation in wireless sensor networks, however, COUNT
and SUMMATION are the main options for aggregation [31].
The dimension reduction methods for collaborative gossip
learning [8] draw parallels with the concept of summarization
in Internet of Things devices illustrated in this paper. However,
this paper additionally studies the dimension reduction of the
data updates by introducing the concept of the send factor
that regulates the frequency of data changes and therefore, the
performance trade-offs of the aggregation. This contribution
can open up new ways for more efficient gossip learning on
fully distributed Internet of Things data [7].

V. CONCLUSION AND FUTURE WORK

This paper concludes that fully decentralized data analytics
using highly dynamic real-time sensor data from Internet of
Things devices is feasible. Trade-offs between privacy, accu-
racy and communication cost in aggregation can be regulated
in an automated fashion using decision trees. This can bridge
the gap of different conflicting requirements of actors involved
in decentralized data analytics such as users protecting their
privacy, vs. infrastructure operators that regulate computational
resources. Experimental evidence using a system implementa-
tion on smart phones and real-world Smart Grid data shows
that the democratization of Internet of Things data analytics
as a public good via the engineering of their decentralization
is promising and viable. This alternative approach for data
analytics is envisioned for sustainable participatory digital
societies built on system trust and privacy-preservation.

Future work includes the evaluation of the proposed system
under network changes and failures [32]. The robustness of
DIAS in such scenarios is currently work in progress as well as
the introduction of differential privacy [33] and homomorphic
encryption [34] in the aggregation sessions of DIAS to hide the
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Figure 8. Average relative errors for different send factors and aggregation functions.
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Figure 9. Number of messages sent for different send factors.

exchange of the selected states. Finally, knowledge from game
theory on public good games can be utilized to incentivize the
formation of a ‘network of the commons’ for decentralized
data analytics as a public good [35], [36], [36].
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