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Abstract—The opportunities to empirically study temporal networks
nowadays are immense thanks to Internet of Things technologies along
with ubiquitous and pervasive computing that allow a real-time fine-
grained collection of social network data. This empowers data analytics
and data scientists to reason about complex temporal phenomena, such
as disease spread, residential energy consumption, political conflicts etc.,
using systematic methologies from complex networks and graph spectra
analysis. However, a misuse of these methods may result in privacy-
intrusive and discriminatory actions that may threaten citizens’ autonomy
and put their life under surveillance. This paper studies highly sparse
temporal networks that model social interactions such as the physical
proximity of participants in conferences. When citizens can self-determine
the anonymized proximity data they wish to share via privacy-preserving
platforms, temporal networks may turn out to be highly sparse and have
low quality. This paper shows that even in this challenging scenario of
privacy-by-design, significant information can be mined from temporal
networks such as the correlation of events happening during a conference
or stable groups interacting over time. The findings of this paper
contribute to the introduction of privacy-preserving data analytics in
temporal networks and their applications.

I. INTRODUCTION

The introduction of Internet of Things technologies along with ad-
vances in ubiquitous and pervasive computing has brought paramount
opportunities for data collection and analysis. This is especially
the case for social interactions in domains such as healthcare [1],
conflicts [2], disease spread [3] and other [4]. Mobile phones,
environmental sensors, and social networks can track human mobility,
relationships and their significance, especially when the interaction
dynamics are represented with temporal networks that model the evo-
lution of interactions [5]. Such networks can encode at a fine-grained
granularity personal information sensitive to citizens. Mining this
sensitive information raises serious privacy threats and opportunities
for discriminatory and surveillance actions [6] that have significant
implications on the autonomy of citizens [7]. However, if the sparsity
of the data increases as a result of self-determined decisions that
improve the privacy of citizens, the effectiveness of mining social
interactions over temporal networks come in questions. This paper
addresses on this challenge. It applies techniques that can measure
the correlation of events and can detect stable groups evolving over
time within a temporal network of social interactions.

This paper focuses on privacy-preserving interactions derived by
the physical proximity of agents in a public space such as a
conference event. When agents are in close proximity at a specific
time point, an interaction can be defined and modeled by an edge
interconnecting the two agents, the nodes of the social network. The
edges interconnecting the agents at each time point/window form

together the temporal network studied. Privacy-intrusion comes in
question when the localization of the agents in the public space and
the calculation of proximity are absolute such as the case in which
nodes and edges are computed based on geolocated data, e.g. GPS.
In contrast, when (i) the proximity data shared are anonymized, (ii)
data sharing is self-determined by the agents and (iii) the localization
of interactions relies on relative distances using technologies such
as bluetooth beacons, privacy-preservation increases [8] at a cost of
significantly lower data quality that challenges the analysis of tem-
poral networks. This paper studies a real-world deployment of such
a privacy-preserving social network formed by a highly-concerned
community about privacy: the 2014 Chaos Communication Congress
in Hamburg. Data are collected with the Nervousnet platform [9] from
154 users during the 4 days of the congress. The technology used
includes bluetooth beacons carried and distributed in the physical
space by the participants themselves. It also involves a mobile app
that participants had to download and use during the conference
and a web server to collect the data. The experimental analysis of
the temporal network shows high correlations of the graphs within
each scheduled event during the congress, however these correlations
decrease when comparing graphs among different scheduled events.
This suggests that every event has different interaction patterns
and dynamics. Moreover, the proposed analysis detects small, yet
statistically significant, stable groups that emerge within the temporal
network studied.

The rest of this paper is organized as follows: Section II introduces
the computational model of sparse temporal networks. Section III
illustrates the data acquisition and analysis process and the results on
events correlation and detection of stable social groups. Section IV
reviews related work. Finally, Section V concludes this paper and
outlines future work.

II. A COMPUTATIONAL MODEL FOR SPARSE TEMPORAL

NETWORKS

This section proposes a model designed for representing a social
system in which the information related to the interactions among
agents is sparse. Such a system can be represented by an undirected
graph.

A graph G is a mathematical object defined by the ordered pair
(V,E), where V is the set of nodes and E the set of edges. In
graphs, which describe social systems, the nodes may represent the
agents, while the edges represent the interactions among them. More
detailed information about graphs can be found in [10]. Temporal
networks, instead, are graph in which the interactions among agents



are not fixed and may vary at different time points, for example
as a consequence of the agents’ mobility. This temporal structure
can affect the dynamics of phenomena, such as the diffusion of
information, since the topological properties of the graph change.
More information on temporal graphs can be found in [5].

In this paper, interactions are defined by the physical proximity
of agents. Measures of proximity can be obtained by detecting the
presence of other agents in their neighborhood. Internet of Things
technologies, such as bluetooth beacons and pervasive/ubiquitous
sensors can track proximity in real-time by measuring the signals
strength. Proximity data are collected by several applications, how-
ever proximity data remain sensitive information. Self-determination
of sharing user data is a requirement in several of these applications
for meeting privacy requirements and therefore, the sparsity of the
collected proximity data challenges data analytics. GPS sensor data
is an example as often agents are not willing to be tracked at fine-
grained granularity.

The objective of the proposed model is the analysis of social
event and group dynamics in social systems governed by interactions
defined by the proximity of the participating agents. This analysis
involves the following two aspects: (i) changes in the volume of
interactions, estimated on the basis of correlation coefficients and
similarity indices computed on temporal graphs extracted from prox-
imity data. (ii) the detection of agent groups with stable observed
interactions.

The adoption of privacy-preserving methods [11] that allow agents
to determine when and to what extent they share proximity data
requires an analysis of the quality of the resulting datasets, in order to
quantify their degree of sparsity. Intuitively, such a quality measure
should quantify to what extent the agents are on average active in
the system: the sparser is the dataset, the fewer agents are recorded
as active in several different time points. To this extent the following
approach is introduced: first, the total time period spanned by the
system is splitted into non-overlapping time windows of equal size.
Then, the quality index

q(N) =
1

N

N∑
i=1

Ai/P (1)

is computed, with N the number of time windows, Ai the number
of agents in the time window i and P the number of agents tracked
at least once in the whole studied dataset. The quality index q(N)
depends on the size of the N time windows. This observation suggests
checking the dataset for different values of N in order to find the time
scale with the highest quality along with the desired time resolution.
Indeed, looking at how the quality index varies at different values of
N gives a general hint on the overall sparsity of the data, but implies
a clear trade-off: the longer the time window in which the quality
index is computed, the higher amount of information is aggregated
per time window and the lower the time resolution is.

A. Temporal network events

When analyzing a temporal network that models a social event with
significant changes during scheduled moments, it is often convenient
to treat time as a non homogeneous variable [12]. For example, it
is expected that only a few, or even no agents interact with others
at night during a congress, or that the interaction dynamics during a
scheduled pause in the social activities is quite different from what
observed when they are in progress.

For this reason, a temporal partition of the system that does not
consider time as a homogeneous variable is considered here. From

Figure 1: Visualization of the time span defined for events. The time
interval filled in yellow represents the earlier, the cyan one represents
the current and the red one represents the following graph.

now on, an event H(T, t) is defined as the set of graphs extracted
by three time windows of width t centered in T − t, T and T + t,
where T is the timestamp of one of the scheduled activities of the
social phenomenon under analysis. The three graphs in each windows
are referred to as the earlier, the current and the following graph
respectively. Figure 1 illustrates the time resolution of an event.

Each graph is obtained by aggregating all the interactions occurring
among the agents in each window. If the proximity data under
analysis produce bipartite graphs, i.e. graphs in which there are two
clear distinguished sets of agents, with no interactions among the
agents of the same set, it is possible to extract the projection graph
on one of the two sets. The projection is performed by adding an
interaction among each pair of agents of the chosen set if and only
if they are connected to at least one common agent of the other
set in the bipartite network [10]. Bipartite networks can occur when
agents do not interact directly with each other, but only with a set
of static sensors. In this case of the projected network, two agents
are connected by an interaction if they are both interacting with the
same sensor.

For both bipartite or monopartite graphs, the multiple interaction
edges among the same pairs of agents are removed, in order to obtain
a simple graph. In this way, the heterogeneity and the noise in the
data are partially reduced.

B. Events analysis and dynamics

Once an event is defined and extracted, the behavior of the agents
tracked within each time window can be analyzed. One interesting
aspect of this behavior is related to the dynamics of agent interactions:
measuring whether their volume and their flux are stable or not within
one or different events provides a useful insight on the attributes of
the events. As an example, one could expect that the crowds attending
music concerts of the same genre have similar patterns of interactions,
and vice versa. This section introduces a set of tools to analyze these
patterns.

Since an event is defined as a collection of networks, its analysis
exploits the tools of graph theory. In order to characterize the activity
of the agents, the degree sequence is extracted from each graph.
Degree centrality is a radial centrality measure [13]: it takes into
account the walks or paths which start/end in the selected nodes,
in contrast with the medial class of centrality measures, which
instead considers the walks or paths which pass through the nodes.
Thus, degree centrality seems the most suitable choice to track
the number of interactions observed among the agents. Another
relevant alternative is the spectral radius of the adjacency matrix.
Starting from the degree sequence of the graphs that characterize
the events, a vector whose size is equal to the number of all the
agents tracked at least once in the three subwindows is assigned to
each graph of the event. Each entry has the value of the degree of
the corresponding agent if it is active in the selected time window,



0 otherwise. Then, the similarity between each pair of vectors is
evaluated. Two similarity and correlation measures are proposed here
due to their large applicability: the generalized Jaccard index [14] and
the Spearman’s rank coefficient [15].1.

Moreover, from the Jaccard index J , it is possible to obtain a
distance dJ between any graphs pair (i, j) [16], dJ(i, j) = 1 −
J(i, j). The distance dJ is a metric that fulfills the triangle inequality.
Thus, computing the differences dJ(e, c)+dJ(c, f)−dJ(e, f), where
e, c, f stand for earlier, current and following, is a way to evaluate
whether the low quality of data is not causing inconsistencies: if the
triangle inequality dJ(e, f) ≤ dJ(e, c)+dJ(c, f) is not fulfilled, the
sparsity of data alters the expected distribution of interactions in time
by making the presence of agents discontinuous.

A different analysis starting from the proposed formalism can
be performed. It concerns the similarity of event pairs, starting
from the triplet of degree sequences defined above. The similarity
measure between events A and B is defined as follows: for both
events the monopartite or the projected network is considered and
the triplet of vectors reporting the degree sequence is extracted as
shown above. The averages, D̃A and D̃B , and the coefficients of
variation [17], CVA and CVB are computed: the first ones are
indicators of the amount of interactions per agent, while the second
ones provide information about the changes occurring in the same
quantity. The similarity between the couples (D̃A, D̃B) and (CVA,
CVB) is computed using the generalized Jaccard index and the
Spearman’s rank coefficient. In this way, global correlation matrices
that quantify the similarity among all the considered events are
obtained. These matrices provide a general overview on the overall
system dynamics, showing whether the flux of interaction per agent
undergoes significant changes during the evolution of the social
system.

C. Stable group detection

A significant attribute of complex networks is their community
structure [18]. A community is a subset of strongly interconnected
nodes with a higher number of interactions among its components
than with external nodes. Thus, community detection can show how
a global set of agents is partitioned in clusters related to different
tasks within a complex system. Historically, community detection
was born within the field of social studies [19], but it expands to
biology [20], informatics [21], virtual social mining [22] and other
fields [18]. Many different contributions are shaping the community
detection field towards different directions [23] [24]. In the case of a
social system represented by proximity data, detecting communities
involves looking for clusters of agents that develop strong, close inter-
actions among themselves. The presence of low quality data, though,
makes the detection of a valid community structure a challenging task
due to the presence of missing interactions, coarse-grained resolution
and other sources of sparsity. In this case, the detection of small,
statistically significant groups that do not cover the whole population
is a more relevant semantic in this context. For this reason, the
rest of this paper refers to groups rather than communities, though
the techniques discussed originate from techniques on community
detection.

Group detection begins with the aggregated graph of all occurred
interactions, or its projection on one of the two sets, if the graph
is bipartite. In light of what already discussed about low quality
data, the aggregated graph may not be fully representative of the

1It must be noticed that this methodology is able to track the changes
only in the number of interactions per agents and does not consider if the
counterparts of the interactions have changed as well.

system. There may be many agents tracked for a limited time.
Another issue is the choice of not being tracked that each agent
can make at any time when using a privacy-preserving platform. This
introduces a significant degree of heterogeneity that can misrepresent
the detected groups. In order to deal with these challenges, a suitable
time scale and a filtration procedure for interactions is introduced. The
intuition is that, once all interactions are aggregated, stable groups
can be detected only after filtering out the statistically less significant
information.

To this extent, the proposed method filters out all ”weak” interac-
tions among agents. The usage of a sliding time window within which
all interactions among the same two agents are treated as a single
one is proposed as a measure of ”strength”. Agents with multiple
interactions in different time windows are described as two nodes
connected by an undirected weighted edge whose weight corresponds
to the number of time windows in which at least one interaction is
registered. In this way the multiplicity of interactions per agent is
reduced.

At this point, the network has to be filtered. The definition of
interactions strength depends on the length of the time windows.
Moreover, in order to filter out the weaker interactions, a threshold
on the strength is required. Thus, the length of the time windows
and the strength threshold are two parameters on which the topology
of the filtered graph depends. In order to detect the best group
partition, a large number of parameter couples is generated. For each
parameter couple, the graph is filtered and a community detection
algorithm is applied on it. All the resulting partitions are ranked by
using modularity, a commonly used measure for graph partitions [18].
Finally, the best performing partition is selected.

A robust statistical validation is required for the evaluation of the
detected groups. When dealing with complex systems represented
as graphs, a well-known validation process is the usage of random
Erdos Renyi graphs as null models. The properties of Erdos Renyi
graphs can be computed analytically in most cases [10]. Moreover,
in order to obtain more statistics on real data, an equivalent family
of graphs can be generated in order to perform the test. Such an
equivalent class of graphs is obtained by rewiring the interactions
among agents without changing their degree sequence, according to
the configuration model [10], [25].

III. DATA ANALYSIS AND EVALUATION

Analysis and evaluation is performed over a proximity dataset
collected during the Chaos Communication Congress2 in Hamburg,
Germany, in 2014. 120 plastic cases encapsulating bluetooth beacons
were 3D printed at the Professorship of Computational Social Science
at ETH Zurich in Switzerland. 20 of these beacons were static
and placed at specific rooms of the congress to localize room-
specific interactions. The rest of the beacons were distributed to
the congress participants. Bluetooth signals were captured by the
Nervousnet platform implemented as a mobile app [9]. 154 unique
participants downloaded the app during the congress. Thus, the app
records bipartite networks in which the projection is performed on
the set of participants who downloaded it, in order to consider only
human agents. The app is capable of measuring the Received Signal
Strength Indication (RSSI) and TX Power of the signal emitted by the
bluetooth beacons. Based on this information the physical distance

2Avaliable at https://events.ccc.de/congress/2014/Fahrplan/schedule.html
(last accessed: June 2016)

https://events.ccc.de/congress/2014/Fahrplan/schedule.html


ID event Day Time Type of transition

1 2014-12-27 15:00 Conference/Break
2 2014-12-27 16:00 Break/Conference
3 2014-12-27 19:30 Conference/Break
4 2014-12-27 20:30 Break/Conference
5 2014-12-28 15:00 Conference/Break
6 2014-12-28 16:00 Break/Conference
7 2014-12-28 19:30 Conference/Break
8 2014-12-28 20:30 Break/Conference
9 2014-12-29 15:00 Conference/Break
10 2014-12-29 16:00 Break/Conference
11 2014-12-29 19:30 Conference/Break
12 2014-12-29 20:30 Break/Conference
13 2014-12-30 15:00 Conference/Break
14 2014-12-30 16:00 Break/Conference

Table I: Time schedule of events during the 2014 Chaos Communi-
cation Congress.

Figure 2: Quality index as a function of the length of the time
windows.

r between a participant with the bluetooth beacons transmitter and a
participant with the Nervousnet mobile app can be derived as follows:

r =
√

10(TX−RSSI)/10, (2)

where r is expressed in meters [26]. Edges are counted when
distances are lower than 5 meters suggesting an actual social in-
teraction. There was no GPS information recorded at any time of
the congress. The data collected are anonymized and timestamped.
Congress activities concern lectures and workshops, with a maximum
of four different activities running in parallel. This analysis focuses
on transitions from a conference event to a break, and vice versa,
scheduled throughout the congress. The timestamps of the transitions
are illustrated in Table I.

The quality index of the dataset is illustrated in Figure 2, in which
the size of the time windows varies from 1 to 24 hours, while the
quality index is always smaller than 0.5. This shows that, on average,
50% of all the agents are not continuously present throughout time.

Figure 3, instead, shows the percentages of agents observed over
time for different number of recorded interactions during the events
extracted from Table I. Figure 4 shows the same percentages heatmap
computed on time windows which equally span the duration of the
whole congress. It is evident that in the first figure the heterogeneity is
reduced and the distributions of percentages are more homogeneous.

Figure 3: Heatmap with the percentages of agents performing a
number of interactions contained in one of the intervals spanned on
y axis during the different events listed in Table I. All columns sum
to 1.

Figure 4: Percentages heatmap built on windows spanning equally
to the whole duration of the congress. White columns represent time
windows in which no interactions were recorded.

Figure 5 shows in blue the decumulative distribution function (ddf)
of the degree sequences aggregated on all bipartite networks. In the
same figure, the red line represents the ddf of the degree sequences
on the projected networks of the same events. The second distribution
is much slimmer than the first one: this means that in the projected
networks agents have lower degrees.

A. Events correlation

Figures 6 illustrates the similarity measures between the degree
sequences of the earlier, the current and the following graphs (e,c,f )
for all non-empty events {H(T, t)}. Table I indicates the values of
T used and t = 0.5 hours, which allows to consider the maximum
possible size of non-overlapping time windows. It should be noticed
that, apart from few exceptions, the values of similarity are high
when using the Jaccard index: almost 60% are above 0.5. A high
value of similarity indicates that the system does not go through
significant changes, i.e. a large number of agents have a comparable
amount of interactions during the event. The agent interactions remain
stable within the same event. On the other hand, since the timestamps
considered in Table I are transition points from different activities
to scheduled pauses, the low correlation values suggest that agent
interactions change.



Figure 5: The decumulative distribution function of the degree
sequences aggregated on all events represented by bipartite graphs
(in blue) and by projected graphs (in red).

Moreover, the triangle inequalities of the Jaccard index on the
triangles given by the vertices (e,c,f ) are computed for each event of
Table I by evaluating the differences dJ(e, c) + dJ(c, f)− dJ(e, f).
The results are shown in the yellow bars of Figure 6a. The high values
of the bars show that the proposed partition of time is well-defined:
in the temporal segments ēc, c̄f and ēf there are no inconsistencies
caused by the missing data in the dataset due to the privacy-preserving
design of Nervousnet.

The outcome of similarity between events pairs are illustrated in
Figures 7 as correlation matrices. In this case, the temporal networks
have low values of similarity: almost 60% of all event pairs have
a correlation lower than 0.2. Moreover, the higher similarity values,
from 0.2 to 0.6, are detected among pairs of events that happened at
the same day. The choice of degree averages or degree coefficient of
variations does not affect significantly the outcomes, whereas using
the Jaccard index provides lower values of similarity.

The outcomes of this measure are a complement of what already
shown in Figures 3-4. Indeed, besides confirming the heterogeneity
and sparsity of the data, this similarity measure reveals that the
volume of interactions per agent during the different events shows sig-
nificant changes. This underlines that the most relevant factor, when
characterizing the time evolution of participation in the congress is
time rather than the event topics: the same agents are more likely to
be tracked in events that are close in time rather than in events that
have similar topics.

B. Detection of stable groups

Figure 8 shows the number of occurrences for each agent in differ-
ent events. It is evident that only a low fraction of agents are active
in more than two events. This justifies the idea of detecting stable
clusters in the whole dataset after applying a filtration procedure
of the system within a suitable time scale. In this way, the most
statistically relevant information is extracted from the system for the
group detection.

In order to find the most proper agent grouping of the system, one
or more community detection algorithms are applied on the graphs
obtained through 10000 couples of randomly generated parameters.
Two of the most promising community detection algorithms [27] are
employed in this context: the first one is the multilevel modularity
optimization algorithm [28] and the second one is the InfoMap
algorithm [29]. Each parameters couple is composed of the length of
the time window, ranging from 1 second to 1 day, and the threshold

Figure 6: Bar chart representation of (a) the generalized Jaccard index
and (b) the Spearman’s rank coefficient between the degree sequences
of the earlier, the current and the after graphs (e,c,a) of all non
empty events. In (a), yellow bars illustrate the differences dJ(e, c) +
dJ(c, a)− dJ(e, a).

of strength used to filter the graph interactions, ranging from 1 to 20:
each interaction, whose strength is lower than the threshold is filtered
out. The groups with the highest modularity are detected by applying
the multilevel algorithm on a network obtained with time windows
of about 8.5 hours (30180 seconds) and with a threshold of 10 for
the weight of interactions. The results of this procedure are shown
in Figure 9. Thus, on the basis of the features in the resulting graph,
it can be confirmed that only few agents have stable and continuous
interactions: the filtering procedure is severe and leaves only 9 nodes,
i.e. 8% of the total, which are partitioned in three groups.

In order to evaluate the relevance of the structural properties
emerged from the group detection procedure, the same procedure
has to be applied to a class of random Erdos Renyi graphs [30].



Figure 7: Correlation matrices computed using Jaccard’s and Spearman’s coefficients on the averages and coefficients of variation for the
degree sequences of events pairs.

Figure 8: Number of agents in different events.

This class is used as a null model, while a class of equivalent graphs
obtained according to the configuration model [31], which preserve
the degree distribution of the original graph, is used as the class to
be tested. It is easy to verify that the number of groups in the set of
configuration model graphs is almost the same: variance and standard
deviation confidence intervals are tight, as shown in Table II.

Figure 9: Result of the group detection on the filtered graph: the
different colors represent the groups detected after the filtration
procedure

Comparing the results on the two different sets, the set of random
graphs is characterized by a higher average and a higher dispersion
of the number of groups, as reported in Table III. This shows that the
final results on the two sets diverge: the Erdos Renyi graphs, taken as
a null model, have a different grouping than the graph extracted from
the empirical data. This is an indicator of the statistical significance
of the model outcome.



Lower Center Upper

Average 3.19 3.19 3.19
Variance 0.16 0.16 0.16
Standard Deviation 0.40 0.40 0.41

Table II: Results of group detection on the configuration model graphs
with a confidence interval α = 0.99. Average, variance and standard
deviation are computed on the number of groups detected in different
graphs.

Lower Center Upper

Average 3.53 3.54 3.55
Variance 0.43 0.44 0.45
Standard Deviation 0.66 0.66 0.67

Table III: Results of group detection on the Erdos Renyi graphs
with a confidence interval α = 0.99. Average, variance and standard
deviation are computed on the number of groups detected in different
graphs.

IV. REVIEW OF RELATED WORK

Physical proximity in closed and open air venues can be measured
via wireless beacons, wearables and mobile devices for detecting
social interactions among people equipped with these devices [33]–
[36]. In particular, the topic of conference proximity analysis is
studied by Isella et al. [37] through a detailed analysis of face-
to-face contact networks under two different scenarios: a scientific
conference and a long-running museum exhibition. The former case
concerns a ‘closed’ system in which a group of individuals interacts
in a repeated pattern. The latter case concerns an ‘open’ environment
with a flow of individuals streaming through a baseline. Face-
to-face proximity data are collected by means of RFID badges
carried by attendees. An extensive analysis on static and dynamic
properties of the proximity network is performed. In contrast, this
work relies on proximity data collected via bluetooth beacons that
allow measurements of longer distances with cheaper equipment. The
proposed analysis does not require any absolute localization of the
interactions, all computed distances between agents are relative to
each other.

Similarly, Cattuto et al. [38] analyzed the network dynamics of
person-to-person interaction networks by collecting data from an
office environment and an academic congress. They conclude that
the node strength, represented by the sum of contacts duration of
those nodes, grows super-linearly with the degree. Moreover, Barrat
et al. [39] utilize a face-to-face contact network during a conference
in conjunction with data collected by the Live Social Semantics
framework [40], in order to analyze contacts patterns and the impact
of parameters such as seniority and role. They compared virtual
interaction networks, including friendships on online social networks,
co-authorship networks, and face-to-face contact networks during a
conference and they conclude to a clear emerging behavior according
to which people tend to mix with other ones of similar scientific
seniority levels. In contrast to these approaches, this paper focuses
on studying complex dynamic interactions such as conference events,
via temporal networks. New measurements and insights, such as the
similarity and correlation of interactions within and across events,
can be determined when social interactions are modeled via temporal
networks.

As the tools of social network analysis advance, the amount of
information that can be accurately inferred from raw and noisy
data increases [41]. Privacy-preserving methods are studied and

adopted to protect sensitive information about users and their so-
cial relationships. The state-of-the-art anonymization methods are
categorized into three main categories [11]: (i) k-anonymity based
privacy-preservation via edge modification, (ii) probabilistic privacy
preservation via edge randomization and (iii) privacy preservation
via generalization. Zou et al. [42] introduces a technique based
on k-automorphism that permits network analysis over anonymized
datasets. In contrast, Nervousnet combines anonymous record data
with real-time self-determination of information sharing and therefore
the privacy-preservation, from the perspective of each individual, is
enhanced.

A different approach is adopted in [32]. In this work, the authors
investigate a database containing GPS data on a set of vehicles.
They observe that it is quite straightforward to extract from raw
data sensitive information on the identity and the routines of several
drivers. To address this issue, they propose a transformation of the
original data through a Voronoi tessellation of the whole space.
They show that their method makes the decrypting probability drop
significantly, without destroying relevant collective properties of the
system. In contrast to this paper, their limitation here is that some
interesting data features such as the structure of communities made
by drivers with similar profiles can be lost after such a transformation.

Cormode et al. [43] study networks as bipartite-graphs in which
links are considered sensitive information that needs to be protected.
They provide an anonymity method that hides this information while
also preserving the graph structure. Another technique is introduced
by Das et al. [44], who consider the problem of anonymizing the
weights of the edges in a social network. They define a linear property
that can be expressed by a specific set of linear inequalities of
the edge weights, therefore they propose a framework to re-assign
weights to edges by preserving a certain linear property. Empirical
evaluation shows that this approach improves the edge k-anonymity
of the modified graph and prevents the identification of an edge by its
weight. In contrast to these anonymization approaches, the proposed
techniques of this paper are applied to shared data exclusively self-
determined by individuals via privacy-preserving platforms such as
the Nervousnet. In other words, the data shared are collected by
design in a privacy-preserving way.

V. CONCLUSION AND FUTURE WORK

This paper concludes that mining of social proximity modeled via
privacy-preserving temporal networks is feasible. Although temporal
social networks encode additional complexity and require advanced
techniques for analysis, this complexity turns out to enhance the
data mining of social phenomena even when data are sparse due to
privacy-preservation. This paper illustrates an analysis of a temporal
network formed by privacy-preserving proximity data collected via
the Nervousnet platform during the 2014 Chaos Communication
Congress. Although the data are highly sparse, the proposed analysis
shows high correlation values between network snapshots within an
event, in contrast to low correlation values between network snapshots
among different events. Moreover, groups with stable interactions and
high modularity scores could be reliably detected from the highly-
sparse dataset, however, the filtration process is severe and indicates
small groups.

Future work includes the applicability of the proposed compu-
tational model to other such highly-sparse datasets but larger ones
that allow the analysis of more complex social phenomena. Other
methods for predictions and deep learning of privacy-preserving
social interactions such as recurrent neural networks can be evaluated
for this purpose.
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