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DATA IN THE 21st Century is like Oil in the 18th Century: an
immensely, untapped valuable asset. Like oil, for those who
see Data’s fundamental value and learn to extract and use it
there will be huge rewards.

We’re in a digital economy where data is more valuable than
ever. It’s the key to the smooth functionality of everything
from the government to local companies. Without it,
progress would halt.
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Big Data’s Dangerous New Era of Discrimination
by Michael Schrage | 8:00 AM January 29, 2014
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Congratulations. You bought into Big Data and it's paying off Big Time. You slice, dice, parse and
process every screen-stroke, clickstream, Like, tweet and touch point that matters to your enterprise.
You now know exactly who your best — and worst — customers, clients, employees and partners
are. Knowledge is power. But what kind of power does all that knowledge buy?

Big Data creates Big Dilemmas. Greater knowledge of customers creates new potential and power
to discriminate. Big Data — and its associated analytics — dramatically increase both the
dimensionality and degrees of freedom for detailed discrimination. So where, in your corporate
culture and strategy, does value-added personalization and segmentation end and harmful
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MUST READ Hackers jump on the Shellshock Bash bandux
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Why big data evangelists should be
sent to re-education camps

Summary: Big data is a dangerous, faith-based ideology. It's fuelled by hubris, it's ignorant of
history, and it's trashing decades of progress in social justice.

By Stilgherrian for The Full Tilt mber 19, 2014 -- M
W Follow i i Get the ZDNet Big Data newsl now

W Tweet | 692 ﬁ Share more +

Comments |~ 27 7t Votes | 7

The last time I wrote about big data, in July, I called it a big,
distracting bubble. But it's worse than that. Big data is an

ideology. A religion. One of its most important gospels is, of 4
course, at Wired.

In 2008, Chris Anderson talked up a thing called The Petabyte /
Age in The End of Theory: The Data Deluge Makes the Scientific /
Method Obsolete. Ny

"The new availability of huge amounts of data, along with the
statistical tools to crunch these numbers, offers a whole new way
of understanding the world. Correlation supersedes causation,
and science can advance even without coherent models, unified theories, or really any mechanistic
explanation at all,” he wrote.

Has anyone got a pin?

Declaring the scientific method dead after 2,700 years is quite a claim. Hubris, even. But, Anderson
wrote, "There's no reason to cling to our old ways." Oh, OK then.

Now, this isn't the first set of claims that correlation would supersede causation, and that the next
iteration of computi
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FeNci SToLeEN GOOPS

Existing social mining practices
threaten social cohesion

“surveillance has become
increasingly privatized, commercialized
and participatory”, Julie E. Cohen



How The Citizen Data Scientist Will Democratize Big Data

The rise of the citizen data scientist is a subject which is creating a lot of excitement at the moment.
Put simply (and a bit bluntly) businesses, particularly larger ones with more mature Big Data
g analytical operations, are finding that it is too important to be left solely in the hands of the data
E ’) scientists.
D AN

Recent Views

Bernard Marr For a start — one reason is that there simply aren’t enough of them. That isn’t to say that data
CONTRIBUTO scientists — by which I mean staff with a formal education in business intelligence, statistics and roles
purely involving data analytics — are no longer needed. They are, and I believe people with these
backgrounds will continue to play a crucial role. But there is an ever growing plethora of tools and

R . roLLow onrorses se)  SETVICES designed to facilitate Big Data analytics outside of the IT lab and across the organization as a

- f ¥ in N whole.
A A X
This is enabling the rise of what has been termed the “Citizen Data Scientist”. In fact, last year
analysts at Gartner ir+13s% predicted that the demand for these people will increase five times more

Pbvoes Compisarors ™ quickly than the demand for “traditional”, highly skilled data scientists.

are their own.

Retailer Sears, for example, recently empowered 400 staff from its business intelligence (BI)
operations to carry out advanced, Big Data driven customer segmentation — work which would

: previously have been carried out by specialist Big Data analysts, probably with PhDs. The move is
Empiro Stso kR said to have created hundreds of thousands of dollars’ worth of efficiencies in data preparation costs
. alone. Exploratory analysis, visualization and putting insights into action is also taken care of by this
new class of Citizen Data Scientist.

Sears used tools provided by Platfora to allow its BI staff to effectively retrain and repurpose
themselves as Big Data analysts. Platfora VP of products Peter Schlamp told me “customer
F()l'bes segmentation is a very complex problem. It is not something your average Excel user can do.

We may think Google Maps is free, but we actually pay by giving it access to valuable data—our geo locations. (Photo by Justin Sullivan/Getty Images)

Plé'ivac'y-‘I.s\'i‘he New Money, Thanks To Big Data

The Apple/FBI showdown was the recent installment in an unfolding legal battle over privacy
protection. Beginning with the Snowden revelations, it is widely thought that the major threat to
our privacy in the digital era comes from the power of Big Government to access personal
information stored in devices and websites. As this debate rages, we are losing sight of the other
enterprise of personal data collection—known as “Big Data”—which is subject to less popular

Omri Ben-Shahar interest, but is far grander in scope, involves higher stakes and numerous ongoing legal battles.

CONTRIBUTOR

The FBI or NSA data collection is Small Data. It focuses on meta-data or on few targeted
individuals under investigation. In contrast, Big Data business is really big. I am talking about the

FOLLOW ON FORBES (4) collection of personal data by websites, mobile apps, retailers, insurance companies — any
N commercial entity that receives information from people. In the old brick-and-mortar world, firms
had Pendaflex files about their customers, neatly tucked away in file cabinets. If you walked into a

supermarket or bookstore and browsed the shelves, there would be no record of this activity. In the
digital world, people leave their prints everywhere. The sum of our activities — where we browse,
shop, or drive; what we read, eat, or own; who we chat with, like or love — is collected, neatly
organized by algorithms, smartly analyzed by sophisticated software, and used or sold primarily
for marketing purposes. It does not decay or gather dust, and it is never forgotten.

Opinions expressed by Forbes
Contributors are their own,

Citizen Data Scientists (Source: Shutterstock)



Opposing Views in Information Sharing
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More data ) J/y Less data,
more information,, more o less information, less surveillance, less
knowledge, more security, discrimination, more freedom/justice,
more business opportunities, more social cohesion,
more prosperity more prosperity

How to bridge this gap?
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Summarization
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The Trade-offs of Information Sharing

Accuracy in data analytics

Average local error

VS.
Global error
1. Total data consumer budget
2. Citizen selections Summarization Elireipy
3. Budget distribution to options
4. Optimization Diversity

Rewards Privacy-preservation



The Trade-offs of Information Sharing

Symbol Interpretation
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Unsupervised learning
Several implementation algorithms

Implementation o _
Summarization - Clustering
Fixed: Manual selection
Survey questions Empirical: Citizens’ preferences, semi-automated

Customizable — number of clusters

Privacy preferences
Algorithmic: Fully-automated, data-driven

Survey answers =» summarization range

My household may decide to be more aware of the
amount of electricity used by appliances we own or buy. P

ECBT - Smart Grid S—
6435 participants
1 sensor Measurements & variables  ECBT Nervousnet
1 year Privacy v v
Accuracy v v
Costs & Rewards v X
Datasets Epoch length daily & weekly daily
Summarization level fixed, empirical & algorithmic  fixed & algorithmic
Nervousnet Number of citizens v v
. . Several sensor types X v
154 part|C|pants Analytics summation average

several sensors
4 days



Evaluation & Research Questions

Does summarization improve privacy?

How does participation level influence privacy?

Which are the trade-offs between privacy & accuracy in analytics?

Does sensor/information type influence these trade-offs?

How rewards can be fairly distributed given citizens’ selections?



Empirical Summarization Values — Smart Grid
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Algorithmic Summarization Values — Smart Grid
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Algorithmic Summarization Values - Nervousnet
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Algorithmic Summarization Values - Nervousnet
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Does summarization improve privacy?

Does sensor/information type
influence these trade-offs?



Privacy-preservation — Smart Grid
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Privacy-preservation — Nervousnet
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How does participation level influence privacy?



Privacy-preservation — Smart Grid
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Privacy-preservation — Nervousnet
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Which are the trade-offs between
privacy & accuracy in analytics?



Privacy vs. Accuracy — Smart Grid
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Privacy vs. Accuracy — Smart Grid
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Privacy vs. Accuracy — Nervousnet
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How rewards can be fairly distributed
given citizens’ selections?



Rewards [€]
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Rewards — Smart Grid
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Conclusions

Higher summarization, higher privacy-preservation

More participants, higher privacy-preservation

Sensor types influence privacy-preservation & accuracy

Local errors cancel out resulting in low global errors

Incentivization can be optimized to be fair
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Questions?
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