

Self-regulatory Information Sharing in Participatory Social Sensing

Evangelos Pournaras, Jovan Nikolic, Pablo Velasquez, Marcello Trovati, Nik Bessis, Dirk Helbing

Opportunities

WIRED

Data Is the New Oil of the Digital Economy

BUSINESS CULTURE DESIGN

GEAR

SCIENCE

SECURITY

SPONSOR CONTENT JORIS TOONDERS, YONEGO

MIT Technology

Log in / Register Search Q

SHARE

Review

Big Data and Analytics: Here, There, and Everywhere

In this content collection, MIT Technology Review looks at the data explosion from multiple angles. Editors and contributors examine how big data is revolutionizing shale-oil production—and how the bigdata boom may be leaving poorer nations behind. They also look at the growing role of data analytics in everything from increasing crop production to gauging driving efficiency.

08 Stories

Advertisemen

This Car Knows Your Next Misstep Before You Make It

Researchers trained a computer to recognize the behavior that precedes a particular maneuver.

October 1, 2015

Trick That Doubles Wireless Data Capacity Stands Up in Cell **Network Tests**

Major wireless carriers have begun testing a technology that can double the capacity of any wireless data connection.

September 30, 2015

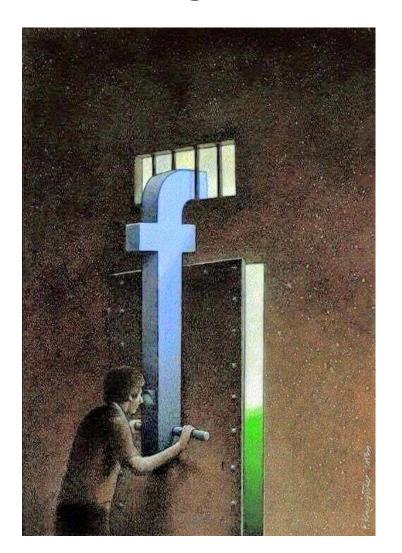
DATA IS THE NEW OIL OF THE **DIGITAL ECONOMY**

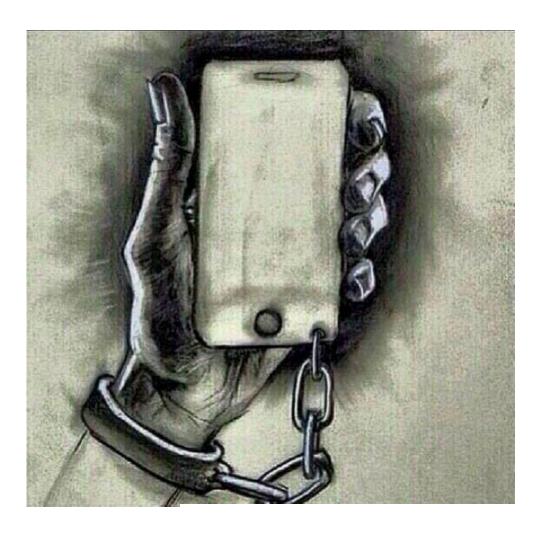
Image: verifex/Flickr

DATA IN THE 21st Century is like Oil in the 18th Century: an immensely, untapped valuable asset. Like oil, for those who see Data's fundamental value and learn to extract and use it there will be huge rewards.

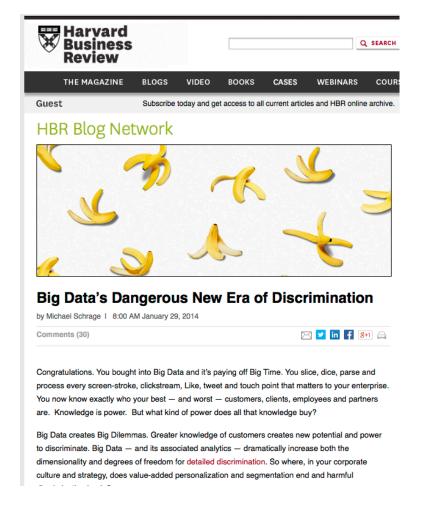
We're in a digital economy where data is more valuable than ever. It's the key to the smooth functionality of everything from the government to local companies. Without it, progress would halt.

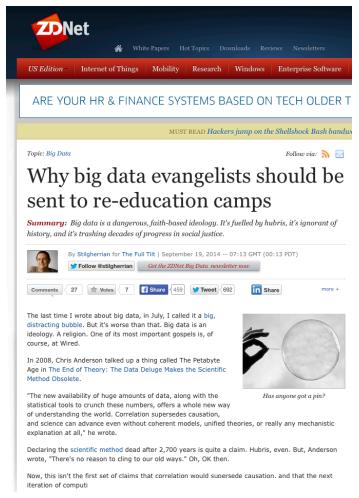
Challenges





Challenges





Challenges

Existing **social mining** practices threaten **social cohesion**

"surveillance has become increasingly privatized, commercialized and participatory", Julie E. Cohen

Recent Views

We may think Google Maps is free, but we actually pay by giving it access to valuable data—our geo locations. (Photo by Justin Sullivan/Getty Images)

Forbes / Opinion

APR 1, 2016 @ 03:48 PM 2,051 VIEW

Privacy Is The New Money, Thanks To Big Data

Omri Ben-Shahar CONTRIBUTOR

economics, and co.

FOLLOW ON FORBES (4)

FULL BIO >

Opinions expressed by Forb

individuals under investigation. In contrast, Big Data business is *really* big. I am talking about the collection of personal data by websites, mobile apps, retailers, insurance companies – any commercial entity that receives information from people. In the old brick-and-mortar world, firms had Pendaflex files about their customers, neatly tucked away in file cabinets. If you walked into a supermarket or bookstore and browsed the shelves, there would be no record of this activity. In the digital world, people leave their prints everywhere. The sum of our activities – where we browse, shop, or drive; what we read, eat, or own; who we chat with, like or love – is collected, neatly

organized by algorithms, smartly analyzed by sophisticated software, and used or sold primarily

for marketing purposes. It does not decay or gather dust, and it is never forgotten.

The FBI or NSA data collection is Small Data. It focuses on meta-data or on few targeted

The Apple/FBI showdown was the recent installment in an unfolding legal battle over privacy protection. Beginning with the Snowden revelations, it is widely thought that the major threat to our privacy in the digital era comes from the power of Big Government to access personal information stored in devices and websites. As this debate rages, we are losing sight of the other enterprise of personal data collection—known as "Big Data"—which is subject to less popular interest, but is far grander in scope, involves higher stakes and numerous ongoing legal battles.

How The Citizen Data Scientist Will Democratize Big Data

Bernard Marr CONTRIBUTOR

I write about big data, analytics and enterprise performance

FULL BIO >

Opinions expressed by Forbes Contributors are their own The rise of the citizen data scientist is a subject which is creating a lot of excitement at the moment. Put simply (and a bit bluntly) businesses, particularly larger ones with more mature Big Data analytical operations, are finding that it is too important to be left solely in the hands of the data scientists.

For a start – one reason is that there simply aren't enough of them. That isn't to say that data scientists – by which I mean staff with a formal education in business intelligence, statistics and roles purely involving data analytics – are no longer needed. They are, and I believe people with these backgrounds will continue to play a crucial role. But there is an ever growing plethora of tools and services designed to facilitate Big Data analytics outside of the IT lab and across the organization as a whole.

This is enabling the rise of what has been termed the "Citizen Data Scientist". In fact, last year analysts at Gartner [1-1.38%] predicted that the demand for these people will increase five times more quickly than the demand for "traditional", highly skilled data scientists.

Retailer Sears, for example, recently empowered 400 staff from its business intelligence (BI) operations to carry out advanced, Big Data driven customer segmentation — work which would previously have been carried out by specialist Big Data analysts, probably with PhDs. The move is said to have created hundreds of thousands of dollars' worth of efficiencies in data preparation costs alone. Exploratory analysis, visualization and putting insights into action is also taken care of by this new class of Citizen Data Scientist.

Sears used tools provided by Platfora to allow its BI staff to effectively retrain and repurpose themselves as Big Data analysts. Platfora VP of products Peter Schlamp told me "customer segmentation is a very complex problem. It is not something your average Excel user can do.

Citizen Data Scientists (Source: Shutterstock)

Opposing Views in Information Sharing

Big Data Analytics vs. Privacy-preservation

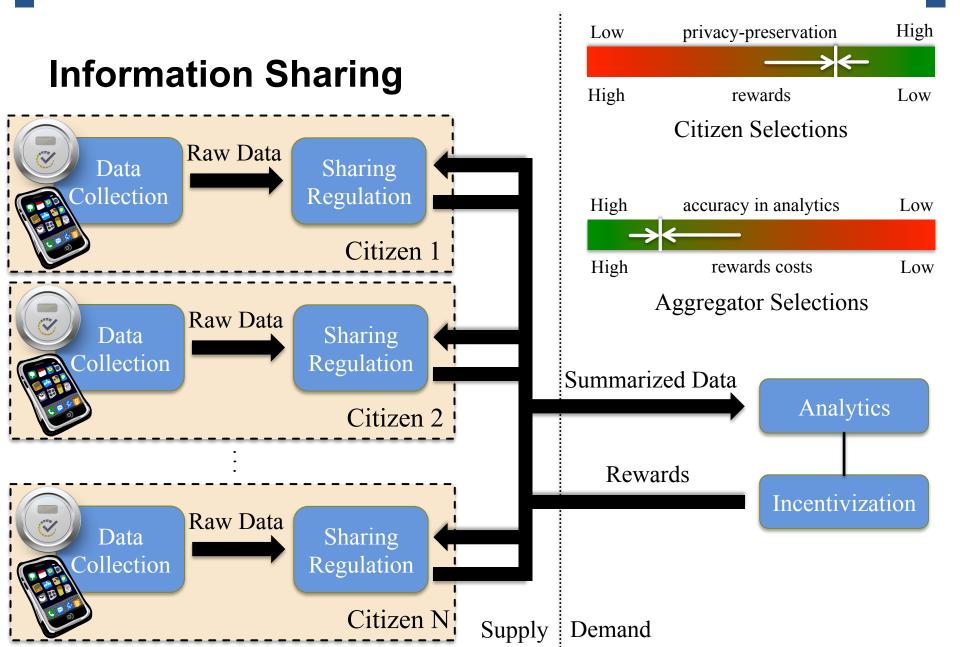
More data,
more information, more
knowledge, more security,
more business opportunities,
more prosperity

Less data,

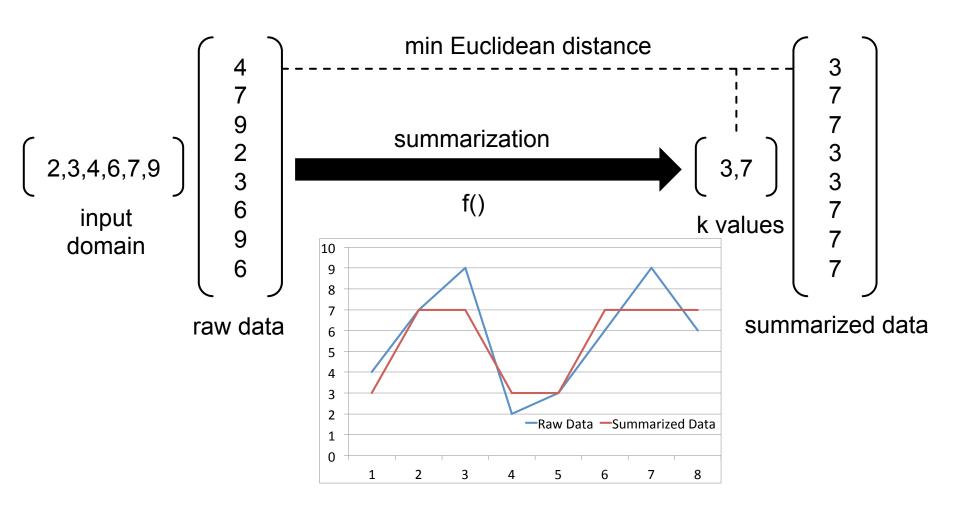
less information, less surveillance, less discrimination, more freedom/justice, more social cohesion,

more prosperity

How to bridge this gap?



Summarization



The Trade-offs of Information Sharing

Accuracy in data analytics

Average local error vs.
Global error

1. Total data consumer budget

2. Citizen selections

3. Budget distribution to options

4. Optimization

Summarization

Entropy

Diversity

Privacy-preservation

Rewards

T	The Trade-offs of Inforn	nation Sharing
Symbol	Interpretation	$\kappa_{i,e}$ Entropy
i	An agent index An enoch index An enoch index	$H(D_{i,e}) = -\sum p_{i,e,j} \log_2 p_{i,e,j},$
e	Arrepoerringex	<u>-1</u>
l T	A time index within an epoch Epoch duration 1	$p_{i,e,j} = rac{1}{T} \sum_{t=1}^{T} n_t, n_t = \begin{cases} 1 & \text{if } c_{i,e,j} = d_{i,e,t}, \\ 0 & \text{if } c_{i,e,j} eq d_{i,e,t}, \end{cases}$
r R _{i.e}		$1 \qquad 1 \qquad 1 \qquad 1 \qquad c_{i,e,j} = a_{i,e,t},$
r _{i,e,t}	Sequence of raw data $\epsilon_{e,t} = -\sum_{i,e,t} \epsilon_{i,e,t}$	$p_{i,e,j} = \frac{1}{T} \sum_{t=0}^{T} n_t, n_t = \{$
S _{i.e}	A record of raw data Sequence of summarized data A record of summarized data Summarization function An index for a possible summarization value	$1 \frac{1}{t=1} 0 \text{if } c_{i,e,i} \neq d_{i,e,t},$
S _{i,e,t}	A record of summarized data $l=1$	
$f_{\rm s}()$	Summarization function $ec{r}_{i,e}$	$S_{i,e,t} - S_{i,e,t}$
j	An index for a possible summarization value $\epsilon_{i,e,t} = \frac{1}{1}$	
$C_{i,e,j}$	A possible summarization value	$ r_{i} $
$k_{i,e}$	The number of possible summarization values	<i>' l,e,l</i>
1	Number of epochs	Diversity
$\alpha_{i,e}$	Summarization metric	T=1
$D_{i,e}$	Sequence of raw or summarization data	$eta_{i,e} = rac{1}{T-1} \sum_{t=1}^{T-1} m_t, m_t = egin{cases} 1 & ext{if } d_{i,e,t} = d_{i,e,t+1}, \\ 0 & ext{if } d_{i,e,t} eq d_{i,e,t+1}, \end{cases}$
$H(D_{i,e})$	Entropy	$\beta_{i,e} = \frac{1}{m_t}$ m_t , $m_t = \{$
p _{i,e,j}	Probability of a possible value occurring in an epoch	$T-1$ $=$ 0 if $d_{i,0,t} \neq d_{i,0,t+1}$
$oldsymbol{eta_{i,e}}$	Occurrence or not of possible value at time <i>t</i> Diversity	$t=1 \qquad \qquad$
$p_{i,e}$ m_t	Change or not between two consecutive time periods t and $t + 1$	Global error
$\epsilon_{i,e,t}$	Local arrar	
$\varepsilon_{i,e,t}$	Global error \mathbf{r}	$-\sum^{\mathcal{N}} c_{i}$
n	Number of participating citizens $i = 1$	$e,t = \angle_{i=1}^{s_{i},e,t}$ Rewards
$\epsilon_{e,t}$	Average local error among citizens $\varepsilon_{e,t} = \frac{\varepsilon_{e,t}}{\varepsilon_{e,t}}$	$\frac{e_{i,t} - \sum_{i=1}^{n} s_{i,e,t} }{\sum_{i=1}^{n} r_{i,e,t} }$, Rewards
γ_e	Total rewards that data aggregators are willing to provide	$r_{i-1} r_{i,e,t}$
$P_{\rm r}()$	Flobability delisity function for fewards	$\gamma_e * P_{r}(\alpha_{i,e})$
Ζ	Number of discrete participation levels	$\gamma_{i,e} = \frac{\gamma_e * P_{r}(\alpha_{i,e})}{n * P_{s}(\alpha_{i,e})}.$
$P_{\rm s}$ ()	Probability density function for summarization	$n * P_{\epsilon}(\alpha; \alpha)$
γ i,e	Rewards provided to agent <i>i</i>	$\alpha_{l,e}$

Implementation

Survey questions

Privacy preferences

Survey answers → summarization range

My household may decide to be more aware of the amount of electricity used by appliances we own or buy.

ECBT - Smart Grid 6435 participants 1 sensor 1 year

Datasets

Nervousnet
154 participants
several sensors
4 days

Unsupervised learning

Several implementation algorithms

Summarization - Clustering

Fixed: Manual selection

Empirical: Citizens' preferences, semi-automated

Customizable – number of clusters

Algorithmic: Fully-automated, data-driven

Measurements & variables	ECBT	Nervousnet
Privacy	√	√
Accuracy	\checkmark	\checkmark
Costs & Rewards	\checkmark	X
Epoch length	daily & weekly	daily
Summarization level	fixed, empirical & algorithmic	fixed & algorithmic
Number of citizens	\checkmark	√
Several sensor types	X	\checkmark
Analytics	summation	average

Evaluation & Research Questions

Does summarization improve privacy?

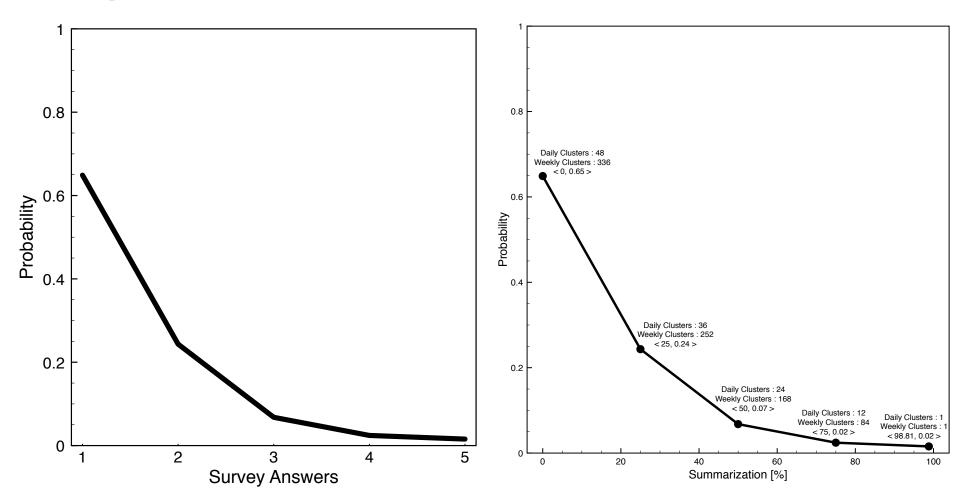
How does participation level influence privacy?

Which are the trade-offs between privacy & accuracy in analytics?

Does sensor/information type influence these trade-offs?

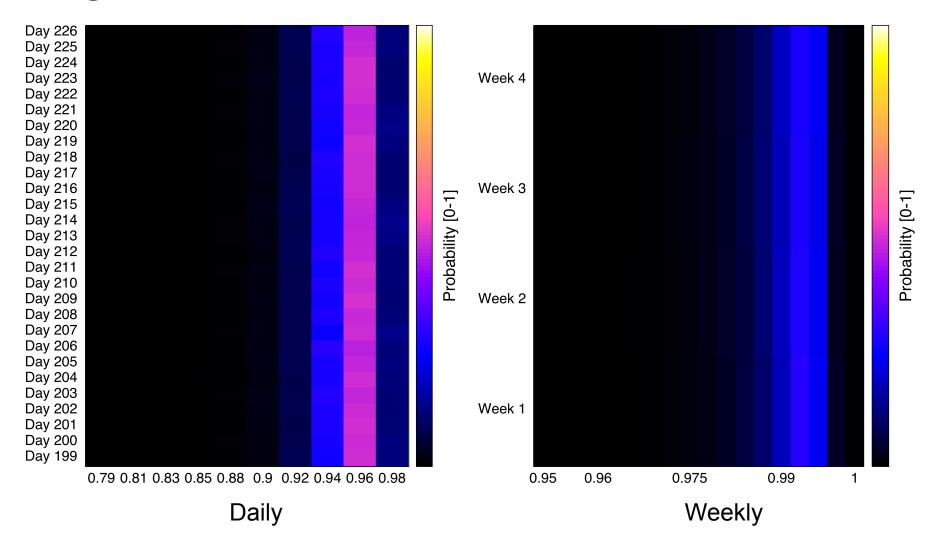
How rewards can be fairly distributed given citizens' selections?

Empirical Summarization Values – Smart Grid

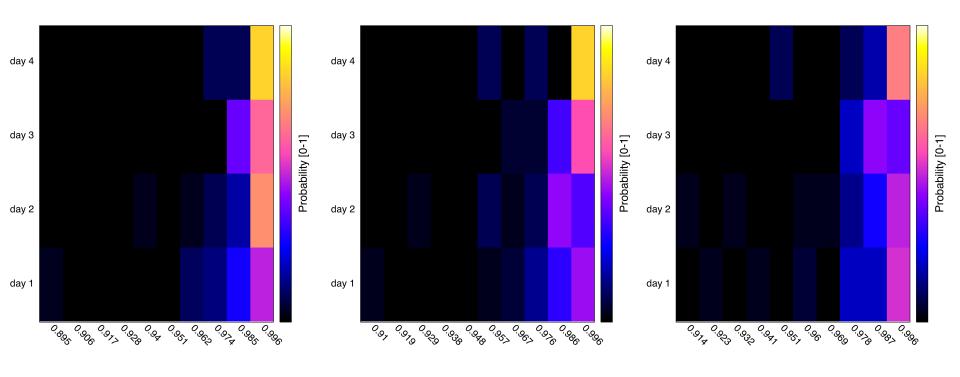


Daily summarization

Algorithmic Summarization Values – Smart Grid



Algorithmic Summarization Values - Nervousnet

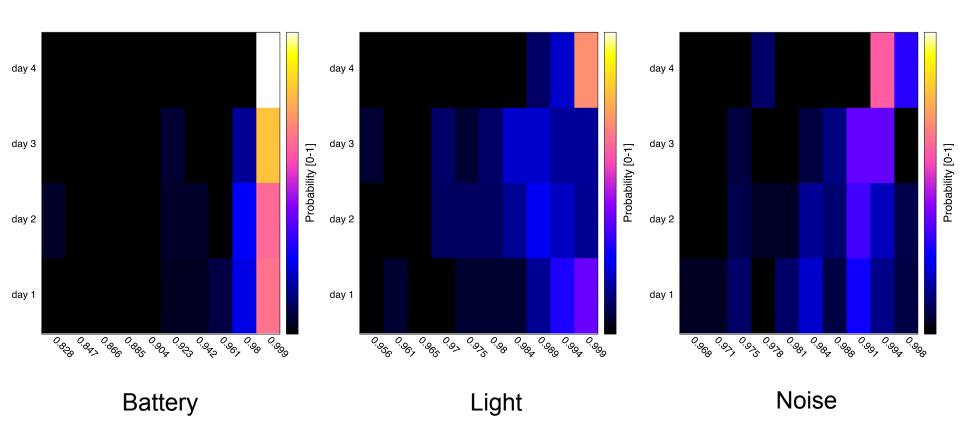


Accelerometer.X

Accelerometer.Y

Accelerometer.Z

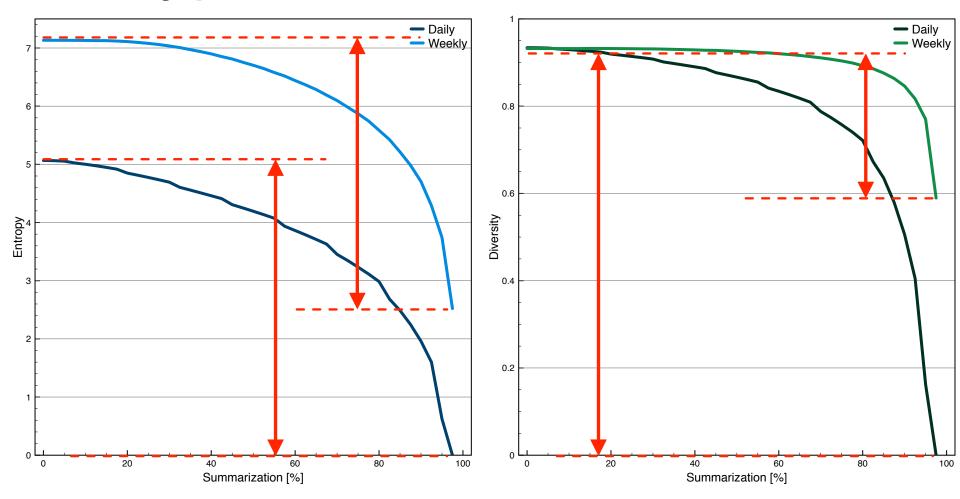
Algorithmic Summarization Values - Nervousnet



Does summarization improve privacy?

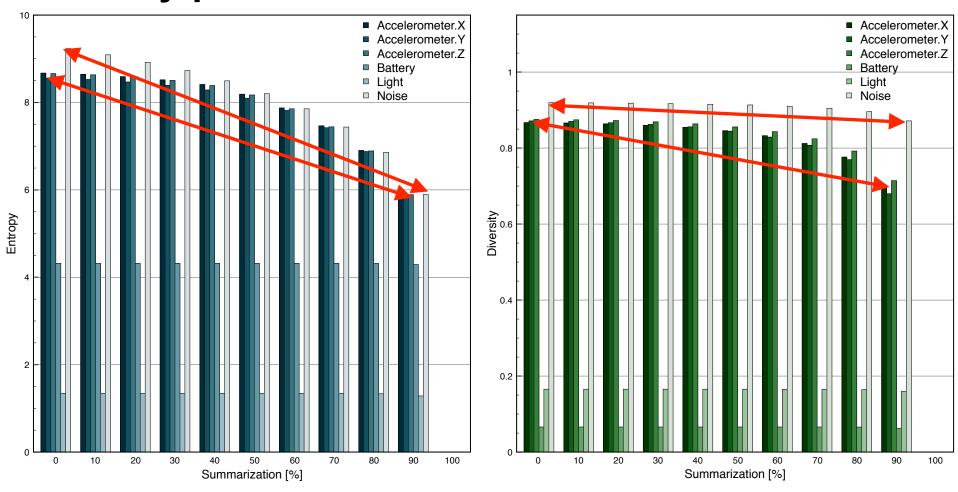
Does sensor/information type influence these trade-offs?

Privacy-preservation – Smart Grid



Fixed summarization levels

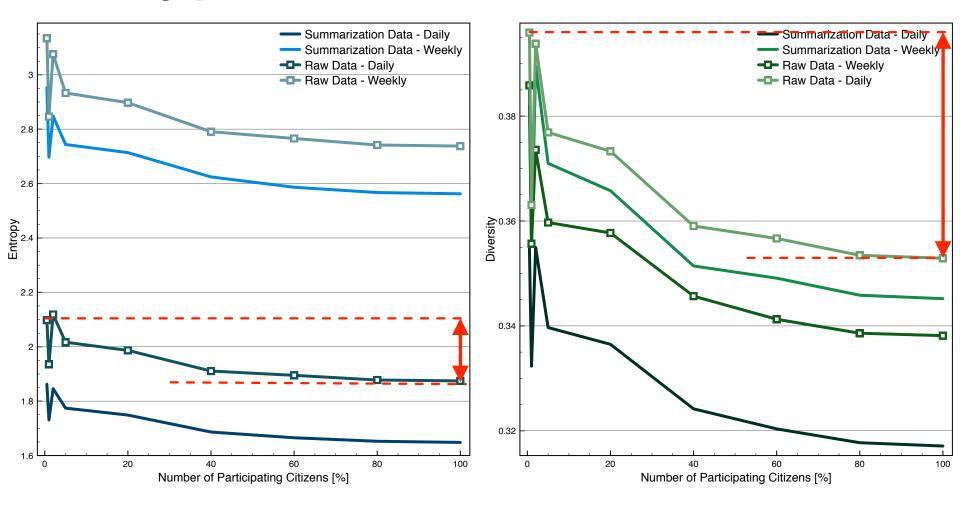
Privacy-preservation – Nervousnet



Fixed summarization levels

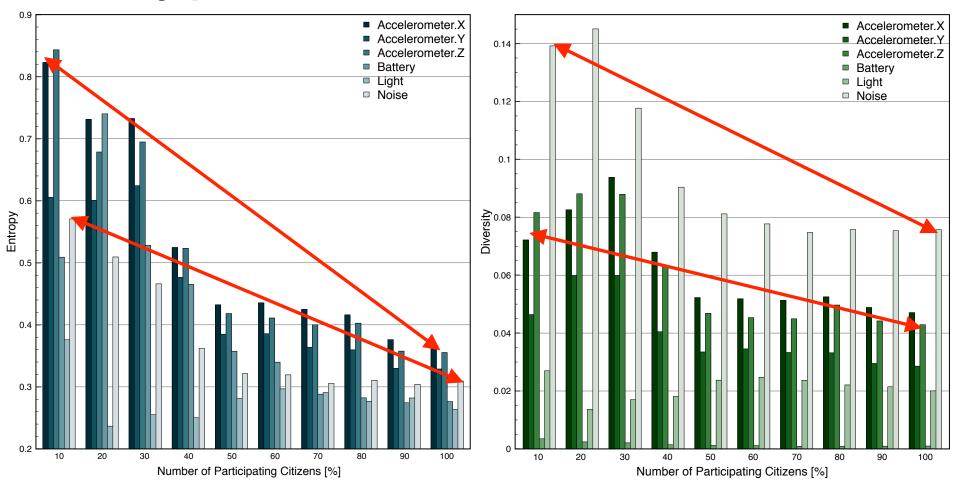
How does participation level influence privacy?

Privacy-preservation – Smart Grid



Empirical summarization levels

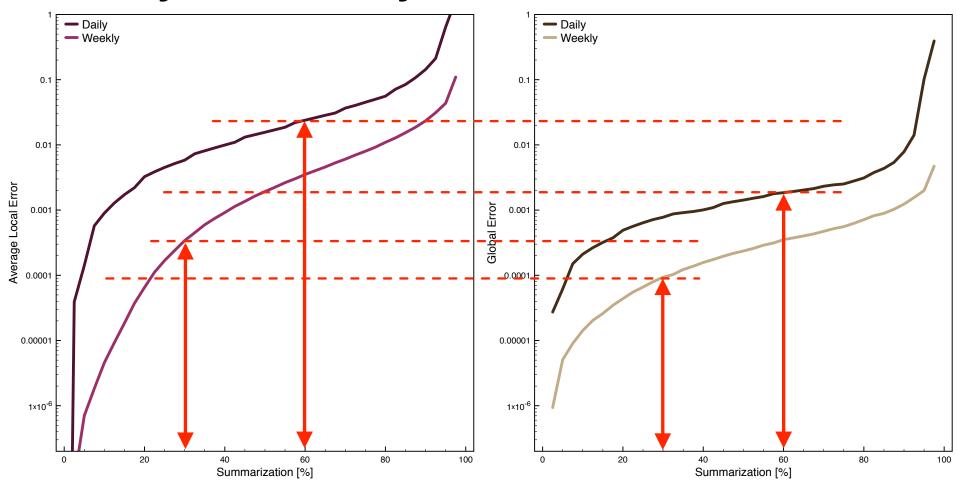
Privacy-preservation – Nervousnet



Algorithmic summarization levels

Which are the trade-offs between privacy & accuracy in analytics?

Privacy vs. Accuracy – Smart Grid



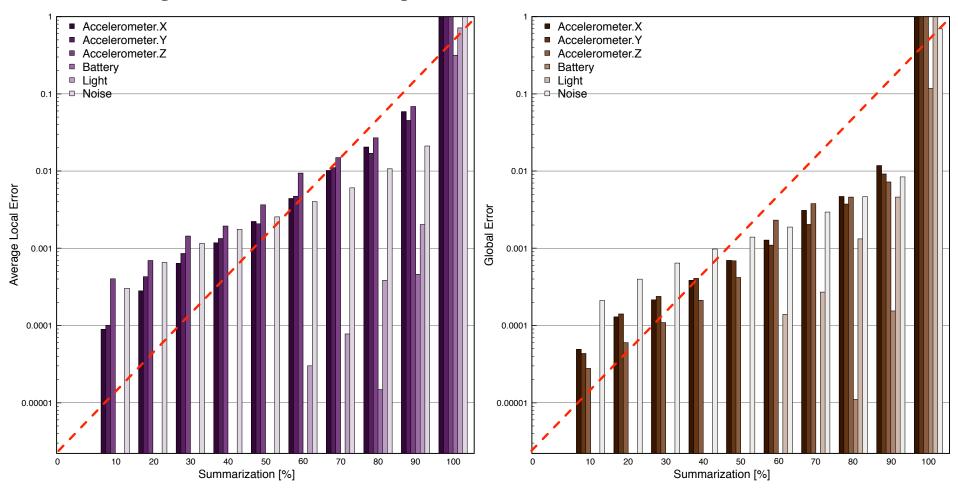
Fixed summarization levels

Privacy vs. Accuracy – Smart Grid



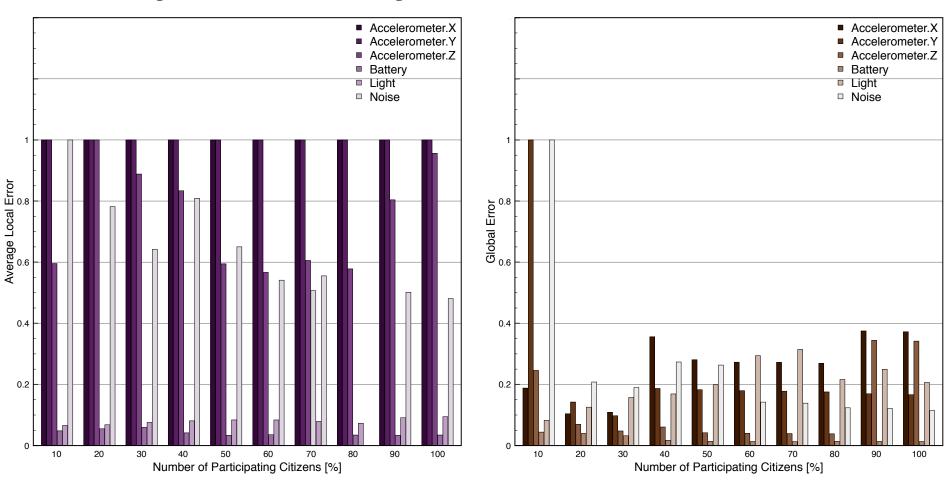
Algorithmic summarization levels

Privacy vs. Accuracy – Nervousnet



Fixed summarization levels

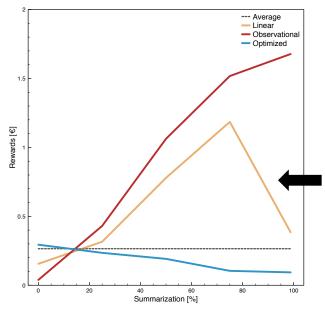
Privacy vs. Accuracy – Nervousnet



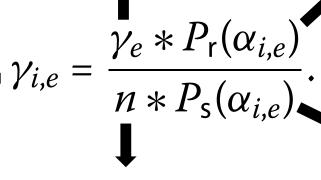
Algorithmic summarization levels

How rewards can be fairly distributed given citizens' selections?

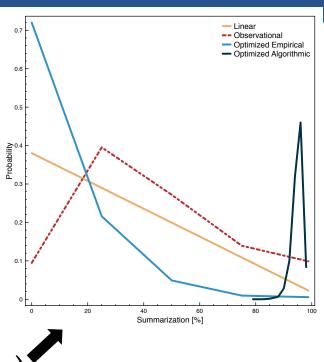
Rewards – Smart Grid

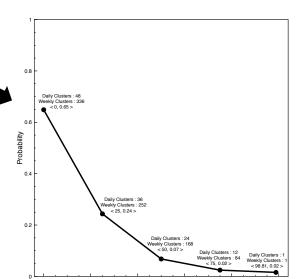


Total budget



Number of citizens

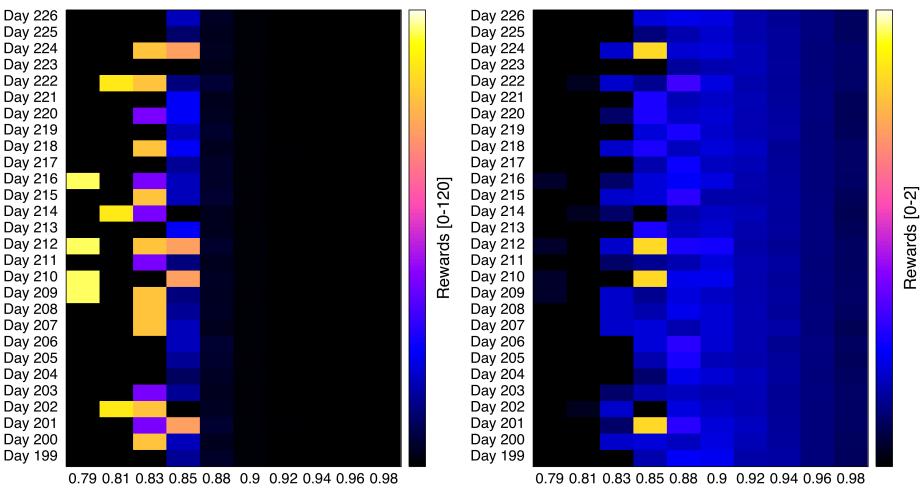




Summarization [%]

Rewards – Smart Grid

Linear



Summarization

Optimized

Conclusions

Higher summarization, higher privacy-preservation

More participants, higher privacy-preservation

Sensor types influence privacy-preservation & accuracy

Local errors cancel out resulting in low global errors

Incentivization can be optimized to be fair

Evangelos Pournaras, Jovan Nikolic, Pablo Velasquez, Marcello Trovati, Nik Bessis and Dirk Helbing, *Self-regulatory Information Sharing in Participatory Social Sensing*, The European Physical Journal Data Science, 5:14, 2016

http://www.amna.gr/article/97775/Eu.-Pournaras-sto-APE-MPE:-Chreiazomaste-mia-pragmatiki-psifiaki-dimokratia

www.evangelospournaras.com

epournaras@ethz.ch