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OVERLAY SERVICE COMPUTING - MODULAR AND RECONFIGURABLE
COLLECTIVE ADAPTIVE SYSTEMS

EVANGELOS POURNARAS �

Abstract. Distributed software systems that determine virtual commu nication structures on top of physical networks, the
overlay networks, are a well-established approach to build various applications of collective adaptive systems such a s peer-to-
peer �le sharing, multimedia multi-casting, aggregation i n distributed databases or routing in wireless sensor netwo rks. Despite
the signi�cance of this approach to apply collective adapti ve systems in practice, applications based on overlay netwo rks often
result in a complex integration of the operational logic wit h topological management. This approach results in low abst raction,
modularity and recon�gurability of applications that requ ire one or more overlay networks to operate. This paper challe nges this
design approach by introducing the notion of overlay servic es that provide generic application capabilities of a broad application
scope enabled by one or more overlay networks. This paper con tributes the multi-level conceptual architecture of ASMA that
structures and guides the realisation of overlay services b y using only a few lines of high-level algorithmic expressio ns. Two overlay
services realised according to ASMA provide a proof-of-concept for the high abstraction, modul arity and recon�gurability achieved
in collective adaptive systems based on overlay networks.

Key words: distributed system, overlay network, overlay service, arc hitecture, middleware, abstraction, modularity, recon�g -
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1. Introduction. A plethora of collective adaptive systems and applications are build bysoftware that
determines virtual communication structures on top of physical networks such as the Internet, mobile or wireless
sensor networks. These structures are usually referred to as `overlay networks' and they represent interaction pat-
terns or linking of information that mandate the operation and optimisation of a distributed application [21, 34].
For example, IP-multicasting is not widely adopted due to economic andtechnical factors related with security
and a high protocol complexity for network service providers [5]. On the contrary, network communication can
be structured in an overlay network organised in a tree topology used formulticasting multi-media content in
the application-level.

Applications based on overlay networks often result in a complex integration of the operational logic with
topological management. Such applications deal with topological and organisational complexity as a way to
be dynamic, adaptive and capture information changes during their runtime. For example, the organisation
of a tree overlay network with certain topological properties shall improve the performance of multimedia
multicasting, e.g., tree balancing and constraints in node degrees [34]. This integrating design approach results
in low abstraction, modularity and recon�gurability of applications that require one or more overlay networks
to operate.

The design complexity of overlay networks has also raised an argument about the impact of overlay networks
on the future development of the Internet and its distributed applications. There are two main opposing views in
this argument: The purists view overlay networks as testbeds used for the implementation and experimentation
of novel Internet architectures. Purists do not view overlay networks as viable or coexisting architectural
elements of the future Internet. In contrast, pluralists envision overlay networks as a possible solution to deal
with the heterogeneity of applications and the business challenges of network service providers related to the
development and adoption of technological innovations in the Internet infrastructure. This paper reasons about
\ a philosophical revolution in how developers use overlays, rather thana technical alteration in how they build
them" [1]. Given that applications of collective adaptive systems based on overlay networks emerge faster
than the adoption of overlay networks in the Internet infrastructur e, it is evident that a higher abstraction,
modularity and recon�gurability for services of overlay network is r equired as identi�ed in earlier work [11, 17,
20, 18, 33, 4, 16, 41, 42].

This paper introduces the notion of an `overlay service' that is a distributed stand-alone software system,
e.g., middleware, that is based on one or more overlay networks and provides generic application capabilities
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of a broad application scope. This paper contributesASMA, the Adaptive Self-organisation in a Multi-level
Architecture that is a new conceptual multi-level architecture to design and prototype overlay services [25]. A
higher abstraction, modularity and recon�gurability are these novel qualitative properties that collective adap-
tive system inherit when designed according to ASMA. The applicability of the ASMA architecture is challenged
by illustrating the modularity and recon�gurability in two archite ctural realisations of overlay services. These
realisations concern earlier work on large-scale networked systems thatperform highly complex functionality in
a fully decentralised and collective fashion. However, in the new context of this paper it is shown how only a few
lines of high-level algorithmic logic de�ned by ASMA guide and unravel the design and prototyping process of
these complex adaptive systems. In addition, experimental evaluation of the overlay services provides a proof-
of-concept for the high abstraction, modularity and recon�gurability ach ieved with the ASMA architecture. Yet,
evaluation also dissects the performance trade-o�s made as a result of introducing generic collective adaptive
systems.

This paper is outlined as follow: Section 2 de�nes the main concepts proposed in this paper. Section 3
illustrates an overview of theASMA architecture. Section 4 introduces the three levels of theASMA architecture
and their interactions. Section 5 shows how overlay services can be realised by theASMA architecture. In the
same section, the high abstraction, modularity and recon�gurability of t he ASMA overlay services are studied
experimentally. Section 6 comparesASMA with related work. Finally, Section 7 concludes this paper and
outlines future work.

2. Overlay Networks and Services. In the context of this paper, a collective adaptive system of overlay
networks consists of the following computing entities1 as illustrated in Figure 2.1:

1. Host: This entity is a physical machine with a network interface connected to a physical network.
2. Peer: This entity is a software environment that hosts agents and enables their communication.
3. Agent: This entity is a software system that carries out, with some degree ofindependence or autonomy,

a set of operations de�ned by a distributed application.
4. Node: This entity is a logical abstraction and representation of an agent in an overlay network.

Fig. 2.1 . The four entities de�ned within the context of collective ada ptive systems built with overlay networks: (i) host, (ii)
peer, (iii) agent and (iv) node.

An overlay network is de�ned in this paper as a graph representation of information managed by the agents
of a collective adaptive system. Peers and agents can be part of a middleware system or integral parts of

1These overloaded terms may be used in di�erent ways in variou s computing areas such as middleware, peer-to-peer, multi- agent
and telecommunication systems. For example, overlay netwo rks are built by virtual nodes that appear to be related to `pe ers',
`agents', `hosting machines' or `software clients' in lite rature.
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distributed applications. As shown in Figure 2.1, a host may contain morethan one peer that each may also
contain multiple agents. Finally, note that an overlay network is de�n ed by agent memberships: Every agent
in a network stores unique network identi�ers and other information of other agents in a limited (partial) set.
The memberships known to an agent are its partialview of the system.

This paper studies collective adaptive systems of overlay networks designed to serve a wide range of dis-
tributed applications. These generic systems are referred to in this paper as overlay services2. An overlay service
is de�ned as a decentralised software system that provides a number of collective intelligence capabilities of a
broad application scope enabled by one or more overlay networks. Overlayservices can be realised as distributed
middleware systems. Section 5 illustrates two representative examples of overlay services: (i) self-organisation
of overlay networks in tree topologies [30] and (ii) aggregation of dynamically changing information distributed
in the network [29].

An overlay service is characterised by its quality. Thequality of an overlay serviceis de�ned as a measurable
metric that quanti�es the degree to which this overlay service can meet certain application objectives [19], for
instance, the average response time [22] of queries to a directory service that relies on an overlay network.

3. An Architecture for Overlay Services. This paper introducesASMA, the Adaptive Self-organisation
in a Multi-level Architecture. ASMA is a conceptual self-organisation architecture with which di�erent generic
overlay services can be designed. The implementation of an individual overlay service in theASMA architecture
is referred to asarchitectural realisation. An architectural realisation entails the realisations of tasks de�ned in
ASMA.

ASMA addresses the challenges of abstraction, modularity and recon�gurability in overlay services by in-
troducing (i) a multi-level architecture and (ii) inter-leve l interactions. The complexity of a collective adaptive
system is managed by multiple application-independent levels, each with a speci�c self-organisation goal. Each
level in ASMA supports the level above and con�gures the level below. These bottom-up and top-down inter-level
interactions tune the self-organisation operations in each level to improve the quality of an overlay service.

Figure 3.1 illustrates the ASMA architecture positioned in a single peer. The design of an overlay service in
ASMA is de�ned by sets of (i) criteria and (ii) sampleswithin three application-independent recon�gurable self-
organisation levels: (i) the discovery level, (ii) the structuring level and (iii) the coordination level. A criterion
is runtime feedback information that parametrises the operation of a level. A sample is continuously updated
information required for the operation of a level in the ASMA architecture. For each set ofcriteria at each level
in the architecture, a set of samples is generated. Thediscovery level discovers required information in the
network. The structuring level structures this information. Finally the coordination level uses the structured
information to build and provide the intended functionality to an app lication.

Each level of this architecture is managed by one or more autonomous agents. Two corresponding levels
in two di�erent peers are able to communicate remotely. In other words, agents of the same type are able to
remotely interact. ASMA de�nes two types of interactions: (i) vertical and (ii) horizontal. A vertical interaction
is the (local) exchange ofcriteria and samplesbetween two di�erent levels of ASMA located within the same
peer. In contrast, a horizontal interaction is the (remote) exchange ofcriteria and samplesbetween the same
two levels of ASMA located within two di�erent peers.

Criteria are provided in a top-down fashion in vertical interactions: from eachlevel to the level below. In
horizontal interactions, criteria are provided by a remote corresponding level. Acriterion is generated based on
some givensamples. For example, criteria can be generated by a change in the value of a monitored metric,
changes in the underlying network or the result of an agent negotiation.ASMA de�nes three types of criteria
in its vertical interactions:

� Organisational criteria: These arecriteria that parametrise the self-organisation operation of an overlay
service. They are externally provided by an application as input to the coordination level.

2 In contrast to overlay services as de�ned in this section, service overlay networks (SONs), introduced by [39], refer to a number
of dedicated hosts in ISPs that explicitly allocate resourc es for peer-to-peer or other decentralised systems. Bandwi dth resources of
certain quality are provisioned based on SLAs. SONs provide a generic model for the allocation of Internet resources to d ecentralised
systems and applications rather than a methodology of how to provide generic application capabilities enabled by overl ay networks.
Note that this distinction is identi�ed in earlier work [12] that refers to overlay services as overlay-based services. Overlay services
can coexist on top of SONs. In this case, SONs provide a busine ss model for the Internet resource allocation required for o verlay
services and their applications [6].
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Fig. 3.1 . The three levels of the ASMA architecture in a peer.

� Structuring criteria : These arecriteria that parametrise the structuring of samples to improve the
quality of an overlay service. They are provided by thecoordination level to the structuring level .

� Discovery criteria: These arecriteria that parametrise the dissemination and collection ofsamplesin a
network. They are provided by the structuring level to the discovery level.

Samplesare provided in a bottom-up fashion in vertical interactions: from each level to the level above.
In horizontal interactions, samplesare provided by a remote corresponding level. Asample is de�ned within
the context of an overlay service and may represent a wide range of information related to any of the entities
of Figure 2.1: from information about the local host, such as its IP address or its geographic location, to
information about the user, such as his/her reputation and trust in an online community. This information
is usually abstracted from the application. For example, the reputation of a user in an online community can
be represented as an abstract rank value of a node in the overlay network of this community. Three types of
samplesare de�ned in the vertical interactions of ASMA:

� Discovered samples: These aresamples discovered in the network that are locally provided to the
structuring level in which they are managed.

� Structured samples: These arediscovered samplesrequired for building an overlay service. They are
provided by the structuring level to the coordination level.

� Organised samples: These are the output samples achieving a certain quality of an overlay service.
They are provided by the coordination level to applications.

The criteria and samplesillustrated above are application-independent and are abstracted fromthe appli-
cation. Samplesare provided from the one level to the other if a condition is satis�ed. Criteria are feedback
parametrisation triggered by the consumption ofsamplesin a level of the architecture. The criteria and samples
exchanged in horizontal interactions are referred to as (i)incoming criteria, (ii) incoming samples, (iii) outgoing
criteria and (iv) outgoing samples. The semantic of thesesamplesand criteria is de�ned by an architectural
realisation.

In the rest of this paper, the ASMA architecture and its realisations are illustrated via high level algorithmic
expressions that aim at guiding the prototyping process and structuring the di�erent interactive levels in an
overlay service and their interactions3.

3The exact algorithms concerning the functionality of the ov erlay services are out of the scope of this paper and are illus trated
in earlier work about these overlay services.
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4. Architectural Levels. Each individual level of ASMA is de�ned according to Figure 4.1. Algorithms 1
and 2 provide an abstraction for the event generations and reactions in eachASMA level. A realisation of these
algorithms is illustrated in Algorithms 3 and 4 of Section 4.1. Assume an arbitrary ASMA level that (i) generates
some arbitrary output criteria and samplesand (ii) reacts to some arbitrary input criteria and samples. Input
criteria trigger execution of the adapt task that generates the output samples. Similarly, input samplestrigger
execution of the consumetask that generates output criteria . The provide task sends the output samplesto
the level above and theconfigure task sends the output criteria to the level below. Samplesand criteria can
also be sent to a remote corresponding level in a horizontal interaction. However, the provide task may call
the consumetask of the same level instead of the one in the level above, suggesting in this way the possibility
of internal feedback loops within each level. Similarly, theconfigure task may call the adapt task of the same
level instead of the one in the level below. These internal calls, within a level, are possible options de�ned within
a realisation of anASMA level. The realisation of a level is de�ned by the implementation andscheduling of its
tasks.

Fig. 4.1 . The executed tasks of an abstract ASMA level.

Algorithm 1 Generations of output events in anASMA level.
1: while a condition is satis�ed do
2: provide( samples)
3: end while

Ensure: output

Algorithm 2 Reactions of input events in anASMA level.
Require: input
1: if input= criteria then
2: samples= adapt( criteria )
3: else // input= samples
4: criteria = consume(samples)
5: configure( criteria )
6: end if

The three levels ofASMA are summarised as follows: Thediscovery level, positioned at the bottom of the
architecture, performs discovery of remotesamplesrequired by an overlay service.Samplediscovery is achieved
by horizontal interactions that disseminate outgoing criteria and trigger the remote collection of incoming
samples from the network. The dissemination and collection of samples is parametrised by the discovery
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criteria received from the structuring level . The structuring level structures the discovered samplesprovided
by the discovery level or other incoming samplesreceived by horizontal interactions. The structuring criteria
customise the structuring and selection of thestructured samplesprovided to the coordination level. Finally, the
coordination level coordinates the main functionality of an overlay service according toa set of organisational
criteria . The coordination level uses thestructured samplesor other incoming samplesreceived by horizontal
interactions to update the organised samplesprovided to an application. The quality of an overlay service
achieved with certain structured samplesis evaluated resulting in a new set ofstructuring criteria that improve
structured samples. The organised samplesare a result of a continuous inter-level interactions and adaptations
between the three levels ofASMA.

To certain extent, the multi-level architecture of ASMA resembles the simple architectural principle of OSI
layering. However, collective adaptive systems built at the application level with overlay networks continue to
integrate topological management with their main operational logic resultingin limited abstraction, modularity
and recon�gurability. Therefore an OSI-like architectural princip le with self-adaptive levels [43, 44] is a promising
novel design approach to tackle this challenge. The modularity of theASMA architecture could be extended
to more than three levels assembled in various architectural patterns as shown in earlier work [32]. Each
architectural level of ASMA is abstracted as shown in Figure 4.1, therefore, more levels could be added in the
ASMA stack. This paper focuses on three levels as the overlay service realisations illustrated in Section 5 show
empirically that three levels are a cost-e�ective compromise to model the complexity of collective adaptive
systems operating in decentralised networked environments. Therest of this section illustrates each level of the
ASMA architecture in detail.

4.1. The discovery level . The discovery level is responsible for the distribution and availability of sam-
ples to every peer of the hosts of a network providing the abstraction ofsamplediscovery in the structuring level .
The dissemination ofoutgoing samplesin the network is performed usingoutgoing criteria and the configure
task. Symmetrically, the collection of remote incoming samplestriggers the consumetask. Furthermore, the
execution of the adapt task is triggered by incoming criteria and by the discovery criteria that con�gure the
dissemination and collection ofsamplesin favour of the structuring level . Remote communication between peers
is possible as thesamplesdisseminated and collected in the network contain routing information, e.g. the IP
address and port number.

Making distributed sampleslocally available to the peers of a network is challenging and crucial for building
decentralised overlay services. Middleware systems based on centralised information lookup or distributed
lookup mechanisms designed with speci�c applications types in mind cannot always support scalable and generic
overlay services. ASMA introduces the discovery level in the foundations of the architecture to bridge the
information gap of decentralisation in overlay networks.

This paper focuses on a gossip-based realisation of thediscovery level4. Gossiping is a simple and generic
probabilistic communication model according to which agents exchangesamplesin a `push', `pull', or `push-pull'
fashion [14]. The exchange ofsamplesis random to certain degree but other more intelligent policies can be
applied as well. Gossiping information is spread in an epidemic fashionwithin a network [36, 35]. Furthermore,
gossiping is able to prevent clustering of a network by cascading failures of its hosts.

Algorithm 3 and 4 illustrate a high-level description of a `push-pull' gossiping protocol that realises the
horizontal interactions of the discovery level. The outgoing criteria represent a `push' message and theincoming
samplesrepresent a `pull' message. Both contain localdiscovered samplesexchanged in a gossiping fashion. A
gossip-baseddiscovery level periodically sendsoutgoing criteria to a remote discovery level of a selected peer
de�ned within these criteria (line 3 of Algorithm 3). The discovered samplesare also provided periodically
to the structuring level (line 2 of Algorithm 3). Furthermore, the discovery level reacts to incoming criteria
by adapting its discovered samplesand providing in return outgoing samples(line 2-3 of Algorithm 4). The
incoming samplesare consumed and generate the nextoutgoing criteria (line 5 of Algorithm 4).

The core gossiping operations are performed in theadapt and consumetasks illustrated in Algorithm 5
and 6. The adapt task (i) handles incoming criteria that are actual `push' gossiping messages and (ii) generates

4Gossiping is chosen because of its robustness properties and the rapid dissemination of information in distributed net works.
These properties bene�t the overlay services studied in thi s paper. Other mechanisms can be employed as well, e.g., ood ing [15],
random walks [8] and DHT overlays [38].
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Algorithm 3 Event generations by a gossip-baseddiscovery level.
1: loop // periodically
2: provide( discovered samples)
3: configure( outgoing criteria )
4: end loop

Ensure: output

Algorithm 4 Event reactions by a gossip-baseddiscovery level.
Require: input
1: if input= incoming criteria then
2: outgoing samples= adapt( incoming criteria )
3: provide( outgoing samples)
4: else // input= incoming samples
5: outgoing criteria = consume(incoming samples)
6: end if

outgoing samplesthat are actual `pull' gossiping messages (line 1-5 of Algorithm 5). Thediscovery criteria
parametrise gossiping by, for example, selecting policies [14] that tune the dissemination ofsamplesunder various
network conditions, e.g. failures in hosts. Theconsumetask updates the discovered sampleswith incoming
samples(line 1 of Algorithm 6) and selects outgoing samplesto disseminate from the discovered samples(line
2 of Algorithm 6).

Algorithm 5 The adapt task in a gossip-baseddiscovery level.
Require: criteria
1: if criteria = incoming criteria then
2: outgoing samples= selectToDisseminate( discovered samples)
3: incoming samples= getSamples( incoming criteria )
4: outgoing criteria = consume(incoming samples)
5: return outgoing samples
6: else // criteria = discovery criteria
7: // Parametrises gossiping [14]:
8: // `peer selection', `view propagation' and `view selecti on' policies
9: return discovered samples

10: end if
Ensure: samples

Algorithm 6 The consumetask in a gossip-baseddiscovery level.
Require: incoming samples
1: discovered samples= selectToCollect( incoming samples)
2: outgoing samples= selectToDisseminate( discovered samples)
3: outgoing criteria = getCriteria( outgoing samples)
4: return outgoing criteria

Ensure: outgoing criteria

Finally, the selectToCollect and selectToDisseminate tasks (line 1 and 2 of Algorithm 6) implement
the push-pull gossiping interactions and correspond to the respective selection tasks of the peer sampling ser-
vice [14]. The getCriteria task performs the selection of the agent to gossip with (line 3 of Algorithm6)
and the getSamples task simply derives the incoming samplesincluded in a set of incoming criteria (line 3 of
Algorithm 5).

4.2. The structuring level . The structuring level is responsible for the management ofdiscovered sam-
ples, providing in this way an abstraction to the coordination level. More speci�cally, the structuring level
performs (i) structuring, such as sorting, clustering and classi�cation of the discovered samplesreceived from
the discovery leveland (ii) selection of the structured samplesprovided to the coordination level.

Structuring and selection are based on criteria de�ned by an adaptationstrategy. The following three
examples illustrate some adaptation strategies:

� Sorting a list of ranked samplesin an ascending order and selecting the �rstsample from the list.
� Clustering a set of rankedsamplesbased on their ranking distance and selecting the highest or lowest

ranked sample in each cluster.
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� Classifying a set ofsamplesin a number of classes and selecting the most recently addedsample from
each class.

There is a wide range of adaptation strategies that can be designed regardinga certain self-organisation
goal of an overlay service. Adaptation strategies provide dynamic management of samplesas:

� Multiple adaptation strategies can be adopted dynamically during runtime.
� The parameters of an adaptation strategy that de�ne the structuring and selection of samplescan be

recon�gured during runtime.
Both approaches are based on feedback received within thestructuring criteria from the coordination level.

The structuring criteria result in new structured samples that potentially improve the quality of an overlay
service. In this case, thestructuring criteria are an actual feedback about the providedstructured samplesthat
can be used by thestructuring level for either (i) switching to a di�erent adaptation strategy or (ii) rec on�guring
the parameters that de�ne a certain adaptation strategy.

Algorithms 7 and 8 illustrate the event generations and reactions in thestructuring level . The tasks executed
by the structuring level are specialisations of an abstractASMA level. Optionally, criteria and samplescan be
exchanged via horizontal interactions.

Algorithm 7 Event generations by thestructuring level .
1: while a condition is satis�ed do
2: provide( structured samples )
3: provide( outgoing samples) // Optional, de�ned in a level realisation
4: configure( outgoing criteria ) // Optional, de�ned in a level realisation
5: end while

Ensure: output

Algorithm 8 Event reactions by the structuring level .
Require: input
1: if input= structuring criteria then
2: structured samples = adapt( structuring criteria )
3: else if input= discovered samples then
4: discovery criteria = consume(discovered samples)
5: configure( discovery criteria )
6: else // input= incoming criteria or incoming samples
7: // Optional, de�ned in a level realisation
8: end if

Algorithms 9 and 10 illustrate the adapt and consumetask in the structuring level . The adapt task
is based on two subtasks, theadopt and selectToProvide . The �rst subtask is responsible for the choice
and recon�guration of the adaptation strategy based on which the structured samples are selected (line 2 of
Algorithm 9). A learning or rule-based system may be used to correlate certain feedback information contained in
the structuring criteria with a number of adaptation strategies supported by thestructuring level . Furthermore,
the selectToProvide subtask selects a number ofstructured samplesprovided to the coordination level (line 3
of Algorithm 9). The selection of structured samplesis performed based on criteria de�ned within the adopted
adaptation strategy. The consumetask de�nes the structuring of the discovered samples, such as sorting,
clustering, classi�cation, etc., based on the adopted adaptation strategy(line 2 of Algorithm 10). The adopt ,
selectToProvide and structure subtasks are realised by each overlay service and therefore their de�nition is
subject of an architectural realisation

Algorithm 9 The adapt task in the structuring level .
Require: criteria
1: if criteria = structuring criteria then
2: strategy= adopt( structuring criteria )
3: structured samples = selectToProvide( strategy )
4: return structured samples
5: else if criteria = incoming criteria then
6: // Optional, de�ned in a level realisation
7: end if

Ensure: structured samples
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Algorithm 10 The consumetask in the structuring level .
Require: samples
1: if samples= discovered samples then
2: discovery criteria = structure( strategy, discovered samples)
3: return discovery criteria
4: else if samples= incoming samples then
5: // Optional, de�ned in a level realisation
6: end if

Ensure: discovery criteria

Adaptation strategies introduce a modularity level in the design phase of an overlay service. By adopting
multiple adaptation strategies or by recon�guring a certain strategy, self-organisation provides a exible com-
positional environment for meeting complex organisational goals related to various criteria of complex adaptive
systems.

4.3. The coordination level . The coordination level is responsible for the continuous organisational
update of the organised samplesprovided to an application. The update of the organised samplesis based
on the structured samples provided by the structuring level and the organisational criteria provided by an
application. Updating the organised samplesmay require some coordination between remote agents of the
coordination level. These agents are de�ned within the structured samples. Coordination may concern the
exchange ofsamplesrequired for the operation of an overlay service, a negotiation betweentwo agents about
their required samples, a query, or some other type of remote interaction and operation.

The organised samplescan be tuned by a �tness function [23] or another evaluation scheme that maximises
the quality of an overlay service. This process generates a set ofstructuring criteria containing feedback for
the structuring level to trigger the next structured samples that improve the quality of an overlay service.
Therefore, the exchange ofsamplesand criteria between the structuring level and the coordination level is a
continuous and iterative optimisation process of the quality of an overlay service.

Algorithm 11 illustrates the event generations in the coordination level. The delivery of the organised
samples to the application is governed by the organisational criteria (line 1 and 2 in Algorithm 11). The
organisational criteria related with this delivery may concern a certain quality of an overlay service, or an
elapsed runtime period.

Algorithm 11 Event generations by thecoordination level.
1: while a condition is satis�ed do
2: provide( organised samples)
3: end while

Ensure: organised samples

Algorithm 12 shows the event reactions in thecoordination level. A simple coordination scenario of horizon-
tal interactions is assumed in which an agent of thecoordination level sends a set ofoutgoing criteria containing
someoutgoing samplesand receives backincoming samples. This scenario corresponds to coordination based on
an information exchange. Consumingstructured samplestriggers the outgoing criteria (line 2 in Algorithm 12)
and a set ofincoming criteria results in providing outgoing samplesto the agent from which thesecriteria are
received (line 8 and 9 in Algorithm 12). Receivingincoming samplescompletes the coordination by sending a
set of structuring criteria to the structuring level (line 5 and 6 in Algorithm 12). Finally, the organisational
criteria adapt the organised samples(line 11 in Algorithm 12) by parametrising the operation of an overlay
service.

Algorithm 13 illustrates the adapt task. The adapt task performs the parametrisation of the coordination
level as de�ned in the organisational criteria (line 2 in Algorithm 13). It also handles coordination by (i)
consuming theincoming samplescontained in a set of receivedincoming criteria, (ii) con�guring the structuring
level with the structuring criteria and (iii) generating the outgoing samplesthat is sent back to the agent that
initiates coordination (line 4-9 in Algorithm 13).

The consumetask, illustrated in Algorithm 14, (i) initiates the coordination by gene rating outgoing cri-
teria (line 2 in Algorithm 14) and (ii) organises the organised samplesprovided to the application (line 5 in
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Algorithm 12 Event reactions by the coordination level.
Require: input
1: if input= structured samples then
2: outgoing criteria = consume(structured samples )
3: configure( outgoing criteria )
4: else if input= incoming samples then
5: structuring criteria = consume(incoming samples)
6: configure( structuring criteria )
7: else if input= incoming criteria then
8: outgoing samples= adapt( incoming criteria )
9: provide( outgoing samples)

10: else // input= organisational criteria
11: organised samples= adapt( organisational criteria )
12: end if

Algorithm 13 The adapt task in the coordination level.
Require: criteria
1: if criteria = organisational criteria then
2: organised samples= parameterise( organisational criteria )
3: return organised samples
4: else if criteria = incoming criteria then
5: incoming samples= getSamples( incoming criteria )
6: structuring criteria = consume(incoming samples)
7: configure( structuring criteria )
8: outgoing samples= finaliseCoordination( structuring criteria )
9: return outgoing samples

10: end if
Ensure: samples

Algorithm 14). This task results in the structuring criteria provided to the structuring level as feedback for the
improvement of the quality of an overlay service.

Algorithm 14 The consumetask in the coordination level.
Require: samples
1: if samples= structured samples then
2: outgoing criteria = initialiseCoordination( structured samples )
3: return outgoing criteria
4: else // samples= incoming samples
5: structuring criteria = organise( incoming samples)
6: return structuring criteria
7: end if

Ensure: criteria

The adapt and consumetasks show that coordination is an actual response ofoutgoing samplesto a set of
incoming criteria based on thestructuring criteria (line 8 in Algorithm 13) and structured samples (line 2 in
Algorithm 14) respectively. Note that the initialiseCoordination , finaliseCoordination , organise and
parameterise subtasks are realised within an overlay service.

5. Architectural Realisations. This section illustrates two overlay services designed and realised ac-
cording to the ASMA architecture:

� AETOS, the Adaptive Epidemic Tree Overlay Service [30].
� DIAS, the Dynamic Intelligent Aggregation Service [29].

These two overlay services have a generic application scope, yet,earlier work illustrates evidence about their
applicability in the domain of demand-side energy management [25, 28, 31]. Figure 5.1 illustrates the realized
architectures of these overlay services. Both architectures follow the design paradigm of ASMA illustrated in
Figure 3.1.

AETOSself-organises overlay networks in various tree topologies to meet di�erent application requirements.
Trees are used for operations such as decision-making, aggregation, information dissemination etc., with an
applicability in a wide range of distributed applications, e.g., distributed databases [40, 9] and multimedia
multicasting [34]. The three levels of ASMA are relevant to model the complexity of such an overlay ser-
vice: (i) discovery for accessing every possible peer in the network, (ii) structuring and selecting candidate
parents/children according to the intended built topology and (iii) c oordination between the parents/children
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(a) The AETOS overlay service (b) The DIAS overlay service.

Fig. 5.1 . Two overlay service realisations of the ASMA architecture.

to form bidirectional links. Building and maintenance of a tree topology is entirely performed by the AETOS
overlay service without involvement of applications that use it.

DIAS computes aggregates, such asaverage , summation , maximum, and standard deviation , of dy-
namically changing values distributed in every peer of an unstructured overlay network. Collective computation
of aggregates bene�ts a wide range of distributed applications as aggregates are used for load-balancing [26],
data mining [37], sensor networks [3] and other. Accurate computations of aggregates are achieved as values
that are duplicate or locally changing are detected within the three-level architecture of ASMA: (i) discovery
of information from every possible peer, (ii) structuring this information as exploited(duplicate information),
unexploited(new information) or outdated (changed information) and (iii) using this information for coordi-
nating accurate computations of aggregates between peers. Periodic computations of system-wide aggregate
information are entirely performed by the DIAS overlay service without involvement of applications that use it.

This paper shows how the collective adaptive processes of each ofAETOS and DIAS are dissected and
realised within the de�ned tasks of the ASMA architecture. In other words, these overlay services are used as
case studies ofASMA. Although the main functionality of AETOS and DIAS is illustrated in earlier work, this
paper contributes the novel design approach ofASMA that justi�es the higher modularity and recon�gurability
in both of these overlay services. This section recalls experimental results of AETOS and DIAS to show how the
design methodology ofASMA empirically justi�es the high modularity and recon�gurability of th ese overlay
services. Therefore, the earlier experimental results provide new �ndings in the new context of this paper.
These results validate the recon�gurability of overlay services realised according toASMA architecture and they
also provide evidence of how the modularity concept ofASMA is applied in practice. For example, it is shown
how results about the performance trade-o�s observed inAETOSand DIAS are justi�ed by the recon�gurability
engineered in ASMA. Similarly, the performance results of the adaptation strategies provide evidence that
overlay services can provide a broad range of modular application capabilities.

The overlay services are implemented and evaluated in the Protopeer prototyping toolkit according to the
ASMA architecture [7]. Protopeer is set up to simulate networks of 1500 peers. Each peer hosts three agents5

that implement the architectural levels of ASMA. Each experiment has a duration calculated inepochs. Each
epoch in Protopeer lasts 1000 ms.

5.1. AETOS: The Adaptive Epidemic Tree Overlay Service. The discovery level of AETOS is re-
alised by the gossiping protocol of the peer sampling service [14] as illustrated in Section 4.1. Gossiping guar-
antees that a tree topology can reconnect after single node failures as agents continuously exchange information

5The peerlets of Protopeer implement the agents of each ASMA level.
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to discover each other. The nodes ofAETOS are ranked with a weight to order their positioning in the formed
tree. The weight of the nodes, together with the IP address and the port number, are part of the discovered
samples.

The structuring level clusters discovered samplesreceived from the discovery level into a proximity view
v i (proximity ) that is a list of candidate parents and children. Eight adaptation strategies [27] de�ne criteria for
clustering based on the proximity of the node, e.g., minimum or maximum euclidean distance of their weights.
In addition, adaptation strategies periodically select and provide the candidate parent and children with the
closest proximity to the coordination level. Their quality is evaluated by the coordination level and feedback
is provided to the structuring level via organisational criteria. Event generations of thestructuring level are
time-based as shown in line 1 of Algorithm 7.

Clustering is tuned by employing the T-MAN mechanism [13], that introduces horizontal interactions be-
tween the agents of thestructuring level . The main intuition behind the introduction of T-MAN is to improve
the quality of clustering by letting close proximity agents exchange their discovered samplesin which they share
interest. Algorithms 15 and 16 illustrate the T-MAN functionality embe dded in the adapt and consumetask
of the structuring level . The functionality of T-MAN is injected in the optional blocks of Algorit hm 9 and 10.
Furthermore, the event generations of T-MAN are periodic, meaning that the configure( outgoing criteria) at
line 4 of Algorithm 7 is executed periodically.

Algorithm 15 T-MAN functionality embedded in the adapt task of the structuring level in AETOS.
Require: criteria
1: if criteria = incoming criteria then
2: incoming samples= getSamples( incoming criteria )
3: discovery criteria = structure( strategy, incoming samples)
4: configure( discovery criteria )
5: outgoing samples= selectToCluster( v i (proximity ) )
6: return outgoing samples
7: end if

Ensure: outgoing samples

Outgoing criteria and outgoing samplescontain the exchanged proximity views. The selectToCluster
subtask selects the ranked node with which the proximity viewsare exchanged. It also embeds the proximity
view in the outgoing samples(line 5 and 3 of Algorithm 15 and 16). The structure subtask (line 3 and 2 of
Algorithm 15 and 16) �lls the proximity view according to the adopted adaptat ion strategy [27].

Algorithm 16 T-MAN functionality embedded in the consumetask of the structuring level in AETOS.
Require: samples
1: if samples= incoming samples then
2: discovery criteria = structure( strategy, incoming samples)
3: outgoing samples= selectToCluster( v i (proximity ) )
4: outgoing criteria = getCriteria( outgoing samples)
5: return discovery criteria
6: end if

Ensure: discovery criteria

The coordination level is responsible for building and maintaining the tree topology. Agents negotiate
the formation of bidirectional links with the candidate parents and children received from thestructuring level .
Four types of messages are exchanged that realise horizontal interactions between the agents of thecoordination
level: request, acknowledgment, rejection and removal. The request/ removal messages are used asoutgoing
criteria and the acknowledgment/ rejection messages asoutgoing samples. In both cases, the weights of the
communicating agents are included using thegetCriteria and getSamples subtasks. The establishment of a
link results in structuring criteria with a positive feedback to the structuring level . In contrast, the rejection of
a requestor the removal of a link results in negative feedback. Based on this feedback, the clustering performed
in the structuring level is tuned to provide candidate parents and children that improve the performance
of AETOS [30]. The protocol interactions are realised within the initialiseCoordination and finalise-
Coordination subtasks of Algorithm 14 and 13. Finally, the organise subtask of Algorithm 14 facilitates the
coordination logic by reacting to the received messages.
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Figure 5.2 illustrates performance trade-o�s between three adaptationstrategies of AETOS6: bottom-up ,
humble and top-down . Four performance metrics are shown that measure the quality of theAETOS overlay
service: (i) connectedness, (ii) connectivity, (iii) �tness and (iv) communication cost. Connectedness measures
how well connected nodes are in a single tree, whereas, connectivity measures the extent to which nodes establish
the maximum number of links (children) that their resources allow. Fitness evaluates the sorting of the nodes
in a tree and the communication cost counts the number of messages exchanged at the coordination level.

(a) Connectedness. (b) Connectivity.

(c) Fitness. (d) Communication cost.

Fig. 5.2 . Performance trade-o�s for three adaptation strategies of AETOS: bottom-up , humble and top-down [30].

Figure 5.2a and 5.2b show that all three strategies build a well-connected tree topology within a few epochs.
However, top-down has the highest �tness of over 0.95 as shown in Figure 5.2c.Humble and bottom-up
follow with a �tness of 0.87 and 0.65 respectively. The high �tness oftop-down comes at a high communication
cost of over 5000 messages per epoch as shown in Figure 5.2d.Humble and bottom-up converge to 2000 and
0 messages per epoch respectively.

Figure 5.3 illustrates snapshots7 of the tree topologies built by the adaptation strategies on the 350th epoch.
The snapshots show visually the e�ect of high �tness in the tree topology built by top-down .

These experimental results show that theASMA architecture provides a high modularity and recon�gura-
bility in the overlay service of AETOS. The performance of each architectural level can be separately studied
and tuned, e.g., communication cost of thecoordination level as shown in Figure 5.2d. A number of adaptation
strategies provide di�erent performance trade-o�s. For example, in a network with limited bandwidth resources,
bottom-up is the most e�ective, whereas, if network resources are not a constraint, a signi�cantly higher �tness
is achievable bytop-down .

The vertical interactions de�ned within the ASMA architecture can be used to manage and control these

6The adaptation strategies de�ne the candidate parent and/o r children with which each agent chooses to connect. bottom-up :
the lowest ranked candidate parent; humble : the lowest ranked candidate parent and children; top-down : the highest ranked
candidate children.

7Visualisations are performed with the JUNG library [24] ava ilable at: http://jung.sourceforge.net (last accessed: December
2014)
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(a) bottom-up . (b) humble . (c) top-down .

Fig. 5.3 . Visualisation of three adaptation strategies of AETOS on the 350th epoch [30].

performance trade-o�s. This section illustrates a scenario in which two adaptation strategies8, presbyopic and
bottom-up , are combined in such a way that a new strategy,hybrid-03 , inherits the high performance of each
individual one without their limitations. The adaptation strategies are combined via a dynamic adoption scheme
in which agents of thestructuring level change frompresbyopic to bottom-up during runtime. Switching can
be performed automatically by monitoring the convergence of one of the performance metrics at thecoordination
level. If the monitored metric has converged, meaning its deviations are signi�cantly lower than the ones during
system startup, a switching signal can be included in thestructuring criteria . This section shows the feasibility
of designing hybrid strategies by empirically de�ning the switching time point on the 250th epoch and measuring
the change of �tness and communication cost. Figure 5.4 illustrates the performance ofhybrid-03 under this
scenario.

Fig. 5.4 . Perfromance of AETOS before and after switching from presbyopic to bottom-up on the 250th epoch [30].

After switching from presbyopic to bottom-up , �tness increases 8% whereas, the number of messages
drop from 5300 to 700 messages per epoch. Figure 5.5 illustrates the visualisation of the tree topology before
and after switching strategies. Connectedness and connectivity aremaximised. A higher �tness results in a
higher number of nodes connected closer to the root of the tree after adopting bottom-up .

These performance enhancements are achieved without changing any architectural element of AETOS.
Each layer realisation of ASMA retains its objective in each of the scenarios shown.ASMA provides a exible,
structured and modular architectural concept to realise and make manageable the complex system behaviour
of AETOS.

8The agents choose to connect with the candidate parent and/o r children as follows: presbyopic : the highest ranked candidate
parent and the lowest ranked candidate children; bottom-up : the lowest ranked candidate parent.
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(a) 245th epoch. (b) 255th epoch. (c) 380th epoch.

Fig. 5.5 . Visualisation of hybrid-03 before and after switching from presbyopic to bottom-up on the 250th epoch [30].

5.2. DIAS: The Dynamic Intelligent Aggregation Service. DIASperforms decentralised aggregation
by computing aggregation functions that receive as input states distributed in the peers of a network. A state
represents a (aggregation) value of an application parameter at a speci�c point in time. A node may contain the
selected states0

i that is the one aggregated by nodes. During system runtime, the selected state s0
i may change

and is equal to one and only one state from a �nite numberv of locally unique possible statess0
i = s0

i js1
i j:::jsv� 1

i .
As the selected state changes, an earlier selected state is indicatedas ŝi . Each nodei contains an aggregator
Ai , a disseminator Di or both. An aggregator computes aggregation functions asf (s0

0; s0
1; :::; s0

n � 1), whereas a
disseminator provides the selected state toaggregators.

The discovery level of DIAS is realised by the gossiping protocol of the peer sampling service [14]as
illustrated in Section 4.1. Gossiping guarantees that information is disseminated to all peers in a network to
achieve accurate computations of aggregation functions. Agents disseminate and collect the IP address and
port number of aggregatorsto which disseminatorssend their selected state.

The structuring level classi�es aggregator samplesreceived from thediscovery level into three classes: (i)
exploited, (ii) unexploitedand (iii) outdated. The exploitedaggregatorsof a disseminator Di are the ones that
have aggregated its earliest selected states0

i . The unexploitedaggregatorsof a disseminator Di are the ones
with which aggregation has not been performed and therefore,Di has not provided any of its selected states
to these aggregators. Finally, the outdatedaggregatorsof a disseminator Di are the ones that have aggregated
a selected state of thisdisseminator earlier but since then the selected state has changed. Two adaptation
strategies, exploitation and update , provide to the coordination level with priority either unexploitedor
outdatedaggregatorsrespectively. A third adaptation strategy, random , performs a random selection between
unexploitedand outdated.

Classi�cation in these three classes is possible via local storage ofaggregation membershipsthat is a rep-
resentation of the information required to perform accurate aggregation. Accuracy indicates the quality of the
DIAS overlay service and concerns the computation of aggregation functions without counting twice states or
counting outdated states. An aggregation membershipM group (member) of a certain `member' to a certain
`group' is either positive or negative. Each agent of thestructuring level in a peer i stores unique identi�ers
of possible statesS0

i ; :::; Sv� 1
i corresponding to the actual possible statess0

i ; :::; sv� 1
i . Respectively, S0

i and Ŝi

refer to the unique identi�ers of the selecteds0
i and outdated ŝi state in peer i . The structuring level stores a

representation of the local states, their unique identi�ers, and the coordination level stores the actual states,
e.g., numerical or other type. The structuring level also uses the local unique peer identi�er to map the local
aggregator Ai and disseminator Di . Therefore, Ai = Di . An aggregator Aj and a disseminator Di in two peers
i and j perform horizontal interactions to exchange the required state information for aggregation. Four local
aggregation memberships are involved in the aggregation performed:

Membership 1 ( M Di (Aj )). Membership of anaggregator in a disseminator.
A disseminator Di stores the identi�er of an aggregator Aj to which it has disseminated its selected state
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at least once during an aggregation.
Membership 2 ( M Su

i
(Aj )). Membership of anaggregator in a possible state.

A disseminator Di stores the identi�er of an aggregatorAj for each possible state identi�ed asSu
i aggregated

by this aggregator.
Membership 3 ( M Aj (Di )). Membership of adisseminator in an aggregator.
An aggregator Aj stores the identi�er of a disseminator Di from which it has aggregated its selected state

at least once during an aggregation.
Membership 4 ( M Aj (S0

i )). Membership of a selected state in an aggregate.
An aggregator Aj stores the identi�er of a selected stateS0

i aggregated from adisseminator Di .
The structuring level e�ciently stores these aggregation memberships in bloom �lters. A bloom �lter is

a probabilistic data structure that e�ciently stores membership information at a cost of false positives. The
structuring level is able to detect and prevent inconsistencies in the aggregation originated from false positives
by using mutual aggregation memberships between anaggregator and a disseminator, e.g., M Su

i
(Aj )-M Aj (Di )

and M Su
i
(Aj )-M Aj (S0

i ) are mutual as they are representation of the same information.
Algorithm 17 and 18 illustrate the interactions of an aggregator Ai with a disseminator Dj . These interac-

tions refer to the optional parts of the adapt and consumetasks in Algorithm 9 and 10 respectively. Aggregation
is initiated by the selectToProvide subtask. Before a selectedaggregator Ai is provided to the coordination
level, a set ofoutgoing criteria is sent to Ai to make its aggregation memberships consistent to the memberships
of disseminator Dj . Lines 1-7 of Algorithm 17 illustrate the update of the aggregation memberships by aggre-
gator Ai . Update of the memberships is performed according the classi�cation outcome of Ai by disseminator
Dj . Aggregator Ai adds the membershipsM Ai (Dj ) and M Ai (S

0
j ) if it is classi�ed as unexploitedby Dj and addi-

tionally removes membershipM Ai (Ŝj ) if it is classi�ed as outdated. Aggregation is performed unidirectionally
(ag=`uni'), however, a bidirectional aggregation is performed if ther e is anaggregator Aj and a disseminator
Di (ag=`uni-bi'). This option is checked in lines 9-18 of Algorithm 17.

Algorithm 17 Aggregation operations embedded in theadapt task of the structuring level in DIAS.
Require: incoming criteria : ag, class, Dj , S0

j , Ŝj

1: add M Ai (S0
j )

2: if class= unexploited then
3: add M Ai (Dj )
4: end if
5: if class= outdated then
6: remove M Ai ( Ŝj )
7: end if
8: if ag=`uni' then
9: if M Di (Aj ) : negative then

10: outgoing criteria = getCriteria( `bi', unexploited, Di , S0
i , Ŝi )

11: outgoing samples= getSamples( `uni-bi', class, Ai , outgoing criteria )
12: else if M Di (Aj ) : positive and M S0

i
(Aj ) : negative then

13: outgoing criteria = getCriteria( `bi', outdated, Di , S0
i , Ŝi )

14: outgoing samples= getSamples( `uni-bi', class, Ai , outgoing criteria )
15: else // M Di (Aj ) : positive and M S0

i
(Aj ) : positive

16: outgoing samples= getSamples( `uni', class, Ai )
17: end if
18: return outgoing samples
19: else // ag=`bi'
20: outgoing samples= getSamples( `bi', class, Ai )
21: return outgoing samples
22: end if
Ensure: outgoing samples

Similarly, the receipt of incoming samplesby disseminator Di triggers the update of its aggregation mem-
berships as shown in lines 1-7 of Algorithm 18.Disseminator Di adds the membershipsM Di (Aj ) and M S0

i
(Aj ) if

aggregatorAj is unexploitedand additionally removes the membershipM Ŝi
(Aj ) if Aj is outdated. This completes

a unidirectional aggregation. If a bidirectional aggregation is performed, the adapt task is executed with the
incoming criteria as an input (line 9 of Algorithm 18).

The coordination level is responsible for the computation of aggregates. An aggregate is continuously com-
puted based on an aggregation function provided by the aggregationcriteria . The parameterise subtask of
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Algorithm 18 Aggregation operations embedded in theconsumetask of the structuring level in DIAS.
Require: incoming samples: ag, class, Aj , incoming criteria
1: add M S0

i
(Aj )

2: if class= unexploited then
3: add M Di (Aj )
4: end if
5: if class= outdated then
6: remove M Ŝi

(Aj )
7: end if
8: if ag=`uni-bi' then
9: adapt( incoming criteria )

10: end if

Algorithm 13 provides the aggregation function. Aggregates are updated by sending the value of the selected
state to aggregatorsprovided by the structuring level and classi�ed asunexploited. If the provided aggregators
are classi�ed asoutdated, the earlier selected state is sent as well. TheinitialiseCoordination subtask initi-
ates this communication, the finaliseCoordination subtasks completes it and theorganise subtask realises
the computation of the aggregation functions as de�ned in Algorithm 13 and 14 of theASMA architecture.

The coordination level forms an overlay network betweenaggregatorsand disseminators linked with over-
lay links that have two possible semantic values: unexploitedor outdated but not exploited. Therefore, the
aggregation functions computed exclude overlay links from thecoordination level that result in duplicate aggre-
gation values (exploitedaggregators). The aggregation memberships, the classi�cation process, the selections
of aggregatorsare all complexity that is hidden from the aggregation process of thecoordination level. Adap-
tation strategies tune the aggregation process in favour of (i) discovering new selected states in the system
(exploitation strategy) or (ii) updating the aggregates with the most recent selectedstates (update strat-
egy). The coordination level has to only provide the classi�cation criteria that trigger this optimisation and
inform about changes in the selected state. Therefore, thecoordination level remains agnostic about the details
of the optimisation. The aggregation criteria de�ne how the aggregates are provided to applications, e.g., pe-
riodic delivery or delivery when aggregates converge to the actual aggregatevalues by monitoring a minimum
deviation threshold.

Figure 5.6 illustrates performance trade-o�s between accuracy and communication cost for the adaptation
strategies of DIAS. The accuracy measures how close the estimates of the aggregates, e.g.,summation , is to
the actual values [29]. Two scenarios are illustrated regarding how selected states change during runtime: (i)
synchronous and (ii) asynchronous changes. In synchronous changes, the selected states of all peers in the
network change simultaneously. In contrast, asynchronous changes occurarbitrary over time. In the illustrated
experiments, synchronous changes occur every 200 epochs whereas inasynchronous changes, 420 selected states
probabilistically change on average every 10 epochs.

Figure 5.6a and 5.6b show that after a synchronous change, accuracy drops dramatically and is restored to
maximum within 100 epochs. This adaptation of aggregates causes a maximum of 45000 messages per epoch
that drop to zero during the convergence period of 100 epochs. However, the communication cost of 45000
messages per epoch is constant for therandom strategy.

Figure 5.6c and 5.6d show that despite the continuous changes of selected states every 10 epochs,DIAS is
capable of maintaining a high accuracy after the initial convergence at system startup. However, a constant
communication cost of 38000 messages per epoch is required to maintain thishigh accuracy that is yet lower
than the 45000 messages per epoch of therandom strategy.

DIAS can compute a wide range of aggregation functions at a performance comparable with the one shown
in this section. In contrast to related methodologies reviewed in earlier work [29], DIAS does not require any
architectural changes to compute a di�erent aggregation function. It is because of theASMA architectural
modularity that the aggregation process is separated from routing. The twoadaptation strategies provide a
high recon�gurability in di�erent networks settings. For example, d uring network scaling, exploitation is
more e�ective than update . However, for a stable network with frequent changes,update is superior.

6. Comparison with Related Work. In earlier work [10, 11], the idea of `open overlays' is introduced
supported by a generic framework for overlay networks and their applications. This framework receives plug-
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(a) Synchronous changes. (b) Synchronous changes.

(c) Asynchronous changes. (d) Asynchronous changes.

Fig. 5.6 . Performance trade-o�s for the three adaptation strategies o f DIAS: exploitation , update and random [29].

in overlays de�ned by three components: `Forwarding', `state' and c̀ontrol'. These components are, in some
aspects, similar to the three levels ofASMA. Applications are also introduced as plug-ins and are associated with
possible overlay plug-ins that can support them. A plug-in can be positioned in the framework as independent
or stacked with other plug-ins. Similarly with ASMA, top-down con�gurations are applied during deployment
starting from the application plug-ins to the lower level network plug-ins. However, the number of possible
combinations de�ned by the top-down con�gurations between the available overlay plug-ins can be large resulting
in complex compositions.

Although dealing with overlay plug-ins is a generic, extensible andhighly modular approach, the devel-
opment of the three overlay components may be blended and cannot always be intuitive enough [10, 11].
Furthermore, the framework of overlay plug-ins does not de�ne any high-level semantic of the component inter-
actions. In contrast, ASMA provides a narrower de�ned context and objective for every self-organisation level.
It also shows how these objectives are mutually supported via the exchange ofcriteria and samples.

Some related work [17, 20] focuses on supporting multiple overlays network capabilities as an IP-layer
solution instead of a middleware solution that ASMA proposes for its realisations. OCALA [17] positions the
`overlay convergence' layer, built by an overlay-independentand an overlay-dependent component, under the
transport layer. These layers provide a level of routing and lookuptransparency between physical machines
belonging to di�erent overlay networks. However, there is a plethora of problems and open issues related to the
support of existing IP-based applications, security, e�ciency and access to overlay functions beyond routing.
MOSAIC [20] is a declarative methodology for the composition of `horizontal' (bridged via gateways) or `vertical'
(layered similarly to ASMA) overlay networks. Although this methodology provides a highly con�gurable and
reasoning compositional environment for overlay networks, a large amountof information must be known a
priori for each individual peer of the network. In addition, MOSAIC is h ighly dependent on a directory
service that supports the composition process. It is unclear how changes to the directory service can be
automatically reected in the composed overlay networks. MOSAIC alsofaces the restrictions of an IP-layer
solution similarly with OCALA. These approaches could in theory function complementary to ASMA overlay
services for supporting communication between heterogeneous networks, e.g., wireless and wired networks.
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iOverlay [18] provides an interface for building overlay networksand their applications. This interface
is rather limited as it only supports overlay communication leaving excessive freedom to the developer. In
comparison with ASMA, the main functionality of iOverlay corresponds to the discovery level of ASMA. A
similar approach with iOverlay is followed by MACEDON [33]. Opus [4] is based on a backbone service to
optimise the resource allocation for di�erent applications. Therefore, the scope of this approach is limited
compared to ASMA and the other approaches illustrated in this section. A multi-level economic framework for
Grid services and resource allocation is earlier introduced [16]. Self-organisation is engaged for the discovery of
agents that negotiate for resources. An overlay abstraction is provided to the agents. The system is designed
based on web service technologies and therefore some of its components remain centralised. In contrast, ASMA
introduces multiple self-organisation levels for system discovery, structuring and coordination without centralised
components but in a collective fashion.

7. Conclusion and Future Work. This paper shows that collective adaptive systems can be designed
and prototyped to provide modular and recon�gurable capabilities of a broad application scope: the overlay
services. This paper contributes theASMA conceptual architecture that guides realisations of complex overlay
services via a few lines of high-level algorithmic expressions. The realisation of two overlay services according
to ASMA together with the earlier experimental results illustrated in th e new context of this paper empirically
justify their higher abstraction, modularity and recon�gurability.

AETOS builds and maintains collectively di�erent tree topologies with di� erent topological properties that
meet several application requirements. Topological recon�gurations in the self-organisation process are ex-
clusively managed by plugged-in adaptation strategies that can be dynamically combined during runtime to
improve performance under various scenarios such as node failures or network scaling. Similarly, DIAS computes
almost any aggregation function that receives for input dynamically changingvalues distributed in a network.
Adaptation strategies con�gure aggregation to compute in priority uncounted or outdated values depending
on various network scenarios in which new nodes enter the network or regularly change their values. In both
overlay services, the three levels ofASMA provide an intuitive and structured pathway to dissect the complex
functionality of these systems in stand-alone, modular and recon�gurable subsystems. Although it is inevitable
that this generic distributed computing approach has an impact on performance, e.g., high communication cost,
overlay services allow recon�gurability with trade-o�s. For exampl e, the eight adaptation strategies ofAETOS
provide a spectrum of choices between high or low communication cost and performance. The dynamic adoption
of adaptation strategies provide the option to explore this spectrum toimprove the overall cost-e�ectiveness of
overlay services.

Future work concerns the further realisation of overlay services according to ASMA. Usability case-studies
and development scenarios shall strengthen the potential of a new distributed computing paradigm for collective
adaptive systems based on overlay services.
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