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Abstract—This paper illustrates socio-technical trade-offs in self-
regulating Smart Grids. Social and technical factors such as robustness,
discomfort and fairness are measured and evaluated using data
from real-world operational Smart Grids projects. Results show a
broad spectrum of socio-technical trade-offs required for effectively
self-regulating Smart Grids. Such trade-offs can make future societies
more participatory and self-sustainable.

This paper is a compressed contribution of earlier work [1], [2].

Index Terms—self-regulation, Smart Grid, demand planning, agent,
robustness, discomfort, fairness

I. INTRODUCTION

Regulating critical infrastructures, such as Smart Grids, is a
challenge. A complex interplay between social and technical factors
govern the capability of Smart Grids to match supply and demand
in real-time. On the one hand, information and communication
technologies (ICT) enable consumers to participate in demand-
response programs and energy markets. These technologies are based
on sensors, controllers and actuators that regulate the demand of
each household in real-time and a personalized way. Consumers can
continuously adapt their comfort level, e.g., the temperature setpoints
of their air-conditioners, based on their preferences and social profile.
On the other hand, Smart Grids are built by physical assets that can
fail at any time, e.g., power lines, generators, etc. Supply may not be
available to meet demand and, therefore, the social preferences may
collectively come in conflict with technical system constraints. The
gap between social and technical factors in Smart Grids becomes
even larger when social preferences are not fairly regulated under
certain technical constraints.

This paper illustrates computational trade-offs that bridge the
regulatory gap between social and technical factors governing Smart
Grids. More specifically, three regulating socio-technical factors
are studied: (i) robustness, (ii) discomfort and (iii) fairness. This
paper claims that improving robustness via demand-side energy
management causes a level of discomfort for consumers that also
influences fairness in the population of consumers in regards to
the level of discomfort they experience. This paper quantitatively
evaluate trade-offs between robustness, discomfort and fairness under
demand planning. These trade-offs can be regulated via intelligent

selections performed by software agents that plan the demand of
consumers. The performance of demand planning is experimentally
evaluated with real data from operational Smart Grids. Results show
that social and technical factors in Smart Grids can be self-regulated
via decentralized demand planning.

II. SOCIO-TECHNICAL SELF-REGULATION

This section outlines three regulatory socio-technical factors that
govern Smart Grids. These factors can be quantified and measured
as shown in earlier work [1], [2].

A. Robustness

The extent to which supply can meet demand or demand can be
adjusted to available supply is an indication of system robustness.
Robustness can be improved by demand planning that aims to
alter the aggregate demand curve by, for example, making it more
homogeneous over time [3]. This paper distinguishes two technical
methods for improving robustness: (i) load-shifting and/or (ii) load-
adjustment. The former shifts load from high peak to low peak times
without a significant influence in the average load over time [4]. The
latter method decreases (or increases) average load via, for example,
incentives mechanisms [5]. Both methods can be applied to improve
robustness by preventing disruptions, such as black-out events, or
minimize their impact when they occur [6]. They can be also used
for a more efficient utilization of energy resources, e.g.,, renewables.

B. Discomfort

On the other hand, discomfort refers to the social impact of load-
shifting and load-adjustment to obtain a higher robustness. This paper
distinguishes two types of discomfort that consumers may experience:
(i) shifting discomfort and (ii) adjustment discomfort. Shifting dis-
comfort is related to the inconvenience experienced by load-shifting.
For example, discomfort can be experienced when people shower at
later or earlier time than the intended one. Adjustment discomfort
is related to the inconvenience experienced by load-adjustment. For
example, low temperature setpoints of air-conditioners during winter
may cause discomfort. Moreover, a discomfort experience depends
on human perception, e.g., when it is cold or how cold it is, and
therefore, the discomfort impact of load-adjustment and load-shifting
is not the same among different social groups of consumers.



C. Fairness

Most demand-side energy management methods do not consider
how discomfort is distributed among consumers. The distribution of
discomfort indicates a degree of fairness in the sense of how socially
equal the contribution of consumers to the robustness of Smart
Grids is. Unfairness is defined by the dispersion of discomfort that
consumers experience (or perceive) when future demand is planned
in response to a load-adjustment or load-shifting event.

III. EXPERIMENTAL EVALUATION

Socio-technical self-regulation is evaluated via a novel combination
of the following methods: (i) Mining historic demand data1 to
plan future demand. (ii) Modeling of user preferences using survey
data1. (iii) Fully decentralized demand-side energy management with
EPOS, the Energy Plan Overlay Self-stabilization system [3], [7].
Robustness, discomfort and fairness are mathematically defined and
measured using the first two methods as shown in detail in earlier
work [1], [2].

Figure 1 illustrates the performance of 8 selection functions with
which demand plans are selected by the agents of EPOS. While MAX-
ENTROPY provides the highest robustness, adjustment discomfort is
minimized by MAX-DEMAND, RANDOM and MAX-LOAD-FACTOR.
Selections functions can be used to make socio-technical trade-offs
for self-regulating demand in Smart Grids
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Fig. 1. Cumulative distribution functions of robustness and adjustment
discomfort.

Figure 2 illustrates how planning configurations influences fair-
ness. More specifically, software agents in EPOS regulate household
demand by selecting a plan to execute from a number of alternatives
l. The higher the number of plans that agent generates, the higher the
robustness is [3], [7], [2]. This is also shown in Figure 3 in which
the power peaks during evening hours are significantly shaved when
the number of plans increases.

However, a larger number of plans increases unfairness in the
population as shown in Figure 2b. Moreover, the temporal factor
is also influencing unfairness. More specifically, during winter times
when demand is higher, unfairness is also higher.

These results provide empirical evidence of how Smart Grids
can be self-regulated by making socio-technical trade-offs. Policies,
decision-making processes and even reward mechanisms can be
designed based on this evidence as shown in earlier work [2].

1Results shown here are computed from the data of the Electricity Customer
Behavior Trial project in Ireland. Available at http://www.ucd.ie/issda/data/
commissionforenergyregulationcer/ (last accessed September 2013)
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(a) l = 2.
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(b) l = 4

Fig. 2. The values of adjustment discomfort under load-adjustment for agents
with different number of possible plans l (dots with values on the right Y axis).
Their dispersion shows the unfairness (line with values on the left Y axis).
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(a) l = 2.
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(b) l = 4.

Fig. 3. Average daily energy demand of agents with different number of
possible plans l.

IV. CONCLUSION

This paper concludes that both social and technical factors are
critical for effectively self-regulating Smart Grids. By measuring
and understanding a broad spectrum of socio-technical trade-offs in
Smart Grids, future societies can become more participatory and self-
sustainable.
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