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Abstract—The introduction of ubiquitous systems, wearable
computing and ‘Internet of Things’ technologies in our digital
society results in a large-scale data generation. Environmental,
home, and mobile sensors are only a few examples of the
significant capabilities to collect massive data in real-time from a
plethora of heterogeneous social environments. These capabilities
provide us with a unique opportunity to understand and tackle
complex problems with new novel approaches based on reasoning
about data. However, existing ‘Big Data’ approaches often turn
this opportunity into a threat of citizens’ privacy and open
participation by surveilling, profiling and discriminating people
via closed proprietary data mining services. This paper illustrates
how to design and build an open participatory platform for
privacy-preserving social mining: the Planetary Nervous System.
Building such a complex platform in which data sharing and
collection is self-determined by the user and is performed in a
decentralized fashion within different ubiquitous environments is
a challenge. This paper tackles this challenge by introducing a
modular and compositional design approach based on a model
of virtual sensors. Virtual sensors provide a holistic approach to
build the core functionality of the Planetary Nervous System but
also social mining applications that extend the core functionality.
The holistic modeling approach with virtual sensors has the
potential to simplify the engagement of citizens in different
innovative crowd-sourcing activities and increase its adoption by
building communities. Performance evaluations of virtual sensors
in the Planetary Nervous System confirm the feasibility of the
model to build real-time ubiquitous social mining services.

I. INTRODUCTION

Ubiquitous systems bring new opportunities for mining
massive amount of data in real-time from physical and digital
environments using mobile, home or environmental sensors.
While more information may improve the understanding of
various social phenomena or societal problems such as dis-
ease spreading [1], economic recessions [2], energy consump-
tion [3], etc., the question that arises is who manages this
information and for the benefit of whom1. Existing ‘Big Data’
systems are often designed as closed, proprietary and privacy-
intrusive that surveille, profile and discriminate people [4].
In contrast to this current practice, this paper envisions a
open, decentralized, privacy-preserving and participatory sys-
tem designed to provide ubiquitous social mining services
engineered as public good: the Planetary Nervous System [5].
How to design such a complex system is the research question
addressed in this paper.

1Some ethical issues are discussed in the FuturICT blog: http://futurict.
blogspot.ch (last accessed: October 2014)

Social mining is defined in this paper as the process of
discovering information from data sensed in one or more
social environments so that a social phenomenon is under-
stood or a societal problem is tackled. Ubiquitous systems,
wearable computing and ‘Internet of Things’ technologies
make our social environments data intensive. For example,
understanding and regulating carbon emissions require data
from a large number of heterogeneous sensors that provide
information about human activity such as mobility, energy
usage, etc. A ubiquitous system that can provide an abstraction
of all these diverse sensors is capable of involving a broader
range of data sources in the social mining process. Moreover,
designing extensible and reusable social mining processes
via compositional data flow of sensors simplifies application
development [6], [7], [8], [9]. This design principle has the
potential to simplify crowd-sourcing activities and increase the
engagement of building communities.

This paper introduces a model of virtual sensors that
provides a modular and compositional design approach to build
ubiquitous social mining services. In contrast to a physical
sensor based on hardware, a virtual sensor can be realized by
software components that aggregate a set of input data streams
from an environment and generate an output stream. The input
streams may originate from physical and virtual sensors. The
output stream becomes the input stream of other virtual sensors
in their environments, resulting in a recursive composition of
system functionality. A filter in each virtual sensor manages
privacy by controlling the availability of the output streams to
other environments.

This paper shows how the model of virtual sensors can
be used to engineer the core components and applications of
the Planetary Nervous System. More specifically, sensor data
from mobile platforms are collected and managed locally by
users. Two privacy levels are introduced to allow users to self-
determine which data are logged locally in their phones and
which are shared with others as a contribution to social mining
services performed system-wide. Both privacy levels are de-
signed with the model of virtual sensors. The performance of
virtual sensors is experimentally evaluated within the Planetary
Nervous System by emulating two users that collect data from
several virtual sensors with a high frequency. Results show that
real-time ubiquitous social mining via data-intensive virtual
sensors is feasible.

This paper is outlined as follows: Section II introduces the
model of virtual sensors. Section III illustrates how the model
of virtual sensors can be used to realize the Planetary Nervous



System. Section IV discusses how the modular and composi-
tional design approach of the virtual sensors model can be used
in the Planetary Nervous System to build applications as virtual
sensors. Section V evaluates the performance of virtual sensors
within the Planetary Nervous System. Section VI illustrates
related work. Finally, Section VII concludes this paper.

II. THE VIRTUAL SENSOR MODEL

Figure 1 illustrates the model of virtual sensors introduced
in this paper. This model can be realized as a generic program-
ming interface, with which open participatory platforms for
privacy-preserving ubiquitous social mining can be software
engineered.
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Fig. 1. The virtual sensor model introduced in this paper.

The core component of this model is the virtual sensor. A
virtual sensor is defined by its environment, an aggregator, a
filter and its output stream.

The environment of a sensor is a set of input streams of data
generated from physical or virtual sensors. The environment
defines the context within which the virtual sensor operates to
generate its output stream.

The aggregator processes the input streams from the en-
vironment of the sensor in real-time and transforms them to
the output stream of this sensor. An aggregator can be part
of different types of sensors. For example, an aggregator may
perform summation of input streams with numerical values,
with each input stream having a given weight. The values of the
weights may vary depending on the type of the sensor in which
the aggregator is applied. Similarly, different aqgregators may
operate within the same type of sensor, for instance, a sensor
that computes the error of the input streams in its environment
can be realized with aggregators that compute the absolute,
relative or root mean square error.

The output stream of a virtual sensor is a type of real-
time data signal generated by the aggregator of the virtual
sensor. An output stream can be part of one or more other
environments.

The filter controls the availability of the output stream to
all other environments in real-time. In other words, the filter
introduces privacy-by-design within the virtual sensor model.
A filter can be realized by a scheduling algorithm or even by a
user interface through which users have full control on which
sensor information they make available.

The information flow of this model is designed to be recur-
sive: It starts from an environment sensed by a virtual sensor.
The output stream of this virtual sensor can form new enhanced
environments for further sensing. This recursive design in
the information flow of the model enables a highly modular,
compositional and extensible environment for building data-
driven ubiquitous platforms for social mining. The rest of this
paper shows how these properties of the virtual sensor model
are put into practice to build an open participatory platform
for privacy-preserving ubiquitous social mining: the Planetary
Nervous System [5].

III. THE PLANETARY NERVOUS SYSTEM

The Planetary Nervous System2 is a large-scale distributed
platform that provides ubiquitous social mining services as a
public good. Users are provided with freedom and incentives
to share, collect and, at the same time, protect their data. Data
are collected in real-time from different heterogeneous sources
such as mobile phones, environmental sensors, home sensors,
etc. In contrast to most existing ‘Big Data’ systems designed
to be closed, proprietary, privacy-intrusive and discriminatory,
the Planetary Nervous System is an open, privacy-preserving
and participatory platform that does not rely on any centralized
computational or data storage entity for its operations.

The development3 of the Planetary Nervous System is an
ongoing work with a large supporting community originated
from the FuturICT project4. The project aims to increase
innovation by evolving as a citizen web via crowd-sourced
participation5. Citizens can contribute in the development of
the core functionality and the development of applications.
This section shows how all the different components of the
Planetary Nervous System can be realized end-to-end accord-
ing to the model of virtual sensors. This holistic approach
provides a shared community view of the project. It increases
community awareness about the different components of the
system and how they can interact with each other. It defines a
common ‘design language’, with which the activities of build-
ing communities can be coordinated. Therefore, the model of
virtual sensors has the potential to simplify the engagement of
citizens in different crowd-sourcing activities and increase its
adoption by building communities.

Figure 2 illustrates the design of the Planetary Nervous
System according to the model of virtual sensors. The first
observation is that all software components of the Planetary
Nervous System are elements of the virtual sensor model.
Data are collected from different ubiquitous environments with
both physical and virtual sensors. The current implementation
focuses on mobile phones such as Android and iOS systems,
however, an extension to the physical sensors of the Arduino
platform is ongoing work.

Smart phones provide access to various physical sensors,
such as accelerometer, humidity, battery, temperature, etc. An
aggregator of a virtual sensor can control the frequency of data
sampling in the output stream of the virtual sensor. Moreover,

2http://www.nervous.ethz.ch (last accessed: October 2014)
3https://github.com/mosgap/nervous (last accessed: October 2014)
4http://www.futurict.eu (last accessed: October 2014)
5Some channels are available at http://www.nervous.ethz.ch/trac and https:

//twitter.com/nervousnet (last accessed: October 2014)
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Fig. 2. The Planetary Nervous System designed according to the model of virtual sensors.

the output streams generated by these virtual sensors on a
user’s device come with a self-determining privacy control in
two levels. The first privacy level provides user control for
storing the data of the output streams in the phone. Users can
select to log or not data from each sensor, but they can also
schedule logging at certain time periods. This privacy control
functionality is implemented in the filter of the Android and
iOS virtual sensors. However, a user may desire different pri-
vacy control for storing data locally and sharing data with other
users. This specialized privacy functionality can be engineered
as a virtual sensor, the sharing sensor as shown in Figure 1,
whose aggregator controls the streams shared in the network
environment. This is the second privacy level introduced in the
Planetary Nervous System. Both privacy levels are designed
via the same model of virtual sensors. Figure 3 illustrates an
example of a user interface that implements the two privacy
levels of control.

Data sensed from sensors are stored in the storage environ-
ment shown in Figure 2. The storage environment implements
an efficient method for serializing structured data with the
Protocol Buffer library6. Data are stored within a data structure

6Available at https://code.google.com/p/protobuf/ (last accessed: October
2014)

of a Red-Black tree that indexes data for fast retrievals based
on range queries that define a period of time. The data stored
in phones act as a data pool over which lightweight data
analytics are performed. Such analytics are implemented in the
aggregator of a local analytics sensor and include aggregation
functions such as summation, average, maximum, minimum,
standard deviation, but also data mining algorithms such as
clustering. The aggregator interface of the local analytics sen-
sor defines a toolkit for real-time operations performed in time-
series data, with which application developers can further build
other virtual sensors. Local analytics are performed over the
data of a sensor type for a defined period of time. The purpose
of the local analytics sensor is twofold: (i) It provides data
for an engaging, interactive and gamifying visual experience
to users in order to understand and explore in real-time their
own social environment and activity. (ii) It provides intuition
for users and developers to build their own applications with
virtual sensors. Figure 4 illustrates two examples of real-time
interactive visualizations7 performed in mobile phones using
the local analytics sensor.

While local analytics provide interesting information about

7The interactive charts of the Planetary Nervous System are implemented
with Chart.js library that is available at http://www.chartjs.org (last accessed:
October 2014).



Fig. 3. An implementation of a user interface with the two privacy control
levels in the Planetary Nervous Systems.

Fig. 4. Two examples of interactive user interfaces in the Planetary
Nervous System that use the local analytics sensor. The first interactive
visualization plots a social graph in real time based on the phsyical proximity
of users. The graph is built with data collected from bluetooth beacons. The
second interactive visualization plots data analytics from sensor data, e.g.
accelerometer data.

single users, collective information about the status of the par-
ticipatory community cannot be captured in real-time via the
local analytics sensor only. System-wide analytics is the ob-

jective of a global analytics sensor, currently work-in-progress
in the Planetary Nervous System. A global analytics sensor is
ambitious and challenging to realize as computations should
be performed in a decentralized fashion without reinventing
the wheel of another ‘Big Data’ system. Distributed privacy-
preserving aggregation services, such as DIAS, the Dynamic
Intelligent Aggregation Service [10] and OpenPDS [11], can
realize a global analytics sensor. More details about the im-
plementation of this virtual sensor are out of the scope of this
paper and part of future work.

IV. APPLICATIONS OF VIRTUAL SENSORS

Building applications according to the model of virtual
sensors is based on the principle of aggregating a set of input
streams from a defined environment and transforming them
to a new output stream. This transformation can take place
at several stages with multiple virtual sensors bound in an
application graph of data streams.

Building applications with this modular and compositional
approach can be straightforward in several cases. For example,
although mobile phones do not have a physical noise sensor,
a virtual noise sensor can be built using the physical sensor
of a microphone. An aggregator samples sound information
from the input stream of the microphone sensor and computes
the sound power level for different frequency bands. Such a
noise sensor is implemented in the Planetary Nervous System.
The virtual noise sensor can be further enhanced to support
higher privacy. For example, the design of a microphone as a
virtual sensor with a filter that implements a low-pass filter for
removing voice frequencies can provide an additional privacy
level for noise detection applications. Spatial data from a
population of users with such virtual noise sensor can be used
to create real-time noise pollution maps of cities.

There are also other more complex applications that may
involve collective crowd sensing, cognitive tasks and detection
of complex human activities or physical phenomena. Some
examples of such applications may include the following:
earthquake detection [8], evacuation/emergency support sys-
tems [12], ambient assisted living [13], etc. A number of
supporting virtual sensors are introduced in the Planetary
Nervous System that generate meta-information used to reason
about the design of complex virtual sensor applications. For
example, a sentiment and activity sensor used under controlled
experiments enable users to tag their status in real-time. Ap-
plication developers can use this information to reason about
their application design. The advantage of these supportive
virtual sensors in this case is that information collected from
this supervised learning or classification process is managed
and stored in a universal way as a user input interface can
be engineered with virtual sensors. Moreover, the privacy-
by-design approach in the model of virtual sensors provides
personalized and self-determining control in data sharing for
every type of application developed with virtual sensors.

V. PERFORMANCE EVALUATION

This section evaluates the performance of virtual sensors
by emulating data collection and retrieval by two phone user.
The emulated users run the Planetary Nervous System in the
following two Android 4.4 devices:



• Samsung Galaxy S II: Dual-core 1.2 GHz Cortex-A9
CPU, 1 GB RAM and Li-Ion 1650 mAh battery

• LG Nexus 5: Quad-core 2.3 GHz Krait 400 CPU, 2
GB RAM and non-removable Li-Po 2300 mAh battery

The users are assumed to run 20 virtual sensors. Each
virtual sensor senses its environment every 5 seconds. The
size of each measurement is assumed to be the same with the
one of the noise virtual sensor implemented in the Planetary
Nervous System that is 53 bytes. Therefore, during a day,
each virtual sensor performs 86400/5=17280 measurements
that require 915.84 KB of storage in the phone. The total
storage requirement each day for all 20 sensors is 18.3 MB
for 345600 measurements.

The goal of the experiments performed in this section is to
evaluate the following performance indicators:

• Insertion time: The total period of time required for
the storage environment to store the total number of
measurements during each day.

• Retrieval time: The total period of time required by
another virtual sensor, e.g. the local analytics sensor,
to retrieve the total number of measurements of a day.

• Battery level: The battery consumed for storing in the
storage environment the total number of measurements
in each day and the battery consumed to retrieve by
another virtual sensor, e.g. the local analytics sensor,
the total number of measurements of a day.

The evaluation focuses on the performance overhead
caused exclusively by the insertion and retrieval of measure-
ments of the 20 virtual sensors. This isolation is achieved
by letting the virtual sensors generate dump measurements in
order to minimize the performance overhead caused by other
operations of the virtual sensors. The experiment runs recur-
sively 10 times to evaluate the performance indicators over an
emulated period of 10 days. During runtime, all applications
and activities of the phone are turned off besides the Planetary
Nervous System application that runs the benchmark.

Figure 5 illustrates the insertion and retrieval times for
the two phones during the emulated runtime of 10 days. The
average daily insertion time for the LG Nexus 5 is around
4 minutes that is 57% faster than the Samsung Galaxy S II
that is over 9 minutes. Similarly, the average daily retrieval
time for the LG Nexus 5 is less than 34 seconds that is 72%
faster than the Samsung Galaxy S II that is over 2 minutes.
Note that the CPU performance of the LG Nexus 5 is almost
double the CPU performance of the Samsung Galaxy S II and
therefore, a significant difference in the insertion and retrieval
times between the two phones is expected. The faster retrieval
time compared to the insertion time is justified by the indexing
structure implemented by a Red-Black tree. These results show
that real-time social mining via the local analytics sensor is
feasible as retrieving all measurements of a day for a certain
type of virtual sensor can be performed in only a few seconds.

Figure 6 illustrates the battery level during the emulated
runtime of 10 days. The main values indicate the battery
level before retrieval, whereas, the error bars indicate the
battery level before insertion and at the end of the experiment.
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Fig. 5. Insertion and retrieval times for the two phones during the emulated
runtime of 10 days.

Storing and retrieving data in the application of the Planetary
Nervous System causes daily 1.5% of battery consumption in
average for the LG Nexus 5, whereas, the average daily battery
consumption for the Samsung Galaxy S II is 10.1%. The results
of the last two days in the experiment of the Samsung Galaxy
S II are missing as the runtime is interrupted because of a
critically low battery level. The significantly higher battery
consumption in the Samsung Galaxy S II cannot be justified
by the battery quality exclusively. The significantly higher
insertion and retrieval times cause a higher overall runtime
of the experiments resulting in a higher overhead in battery
consumption. However, the results of battery consumption
show that the challenging emulated scenario is feasible for
both phones.
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The model of virtual sensors allows several performance
trade-offs that can assure the scalability when the number of
virtual sensors increases. For example, the logging period can



be adjusted on-the-fly according to the total number of virtual
sensors running or according to the performance profile of the
phone. These enhancements are part of on-going work.

VI. RELATED WORK

Authors in [14] provide an overview of the existing virtual
sensing techniques used in several application domains. Virtual
sensing is defined as a technique that relies on physical sensing
and a model to aggregate information from certain areas,
without deploying physical sensors in those locations. In other
words, virtual sensing enables the estimation of information at
one location based on the data obtained from other locations.
Virtual sensing techniques are often used in domains such as
active noise control [15], intelligent transportation systems, gas
sensing systems [16] and robot design [17]. Several research
efforts in these domains focus on defining virtual sensors based
on a common principle: decoupling sensor deployment from
application development that allows applications to dynami-
cally discover, access and compose sensor services.

In [18], a virtual sensor is defined as a software component
that provides measurements that are not physically measurable
by combining sensed data from a group of heterogeneous
physical sensors. A programming interface is introduced that
enables applications to define tailored aggregation through
virtual sensors. A prototype implementation of the middleware
includes the creation of virtual sensors enabling adaptive and
efficient in-network processing that dynamically adapts to
applications needs. A declarative specification of the virtual
sensors allows a programmer to describe the desired behavior.
Applications and sensors share knowledge of a naming scheme
for the low-level data types the sensor nodes can provide,
e.g. ‘location’, ‘temperature’. The programmer specifies the
input data types of the physical measurements, an aggregator
to calculate the desired measurements, the resulting data types
and the aggregation frequency. In contrast, the virtual sensor
model applied in the Planetary Nervous System forms a
different approach: the aggregator component of the local
analytics sensor exposes a generic interface defined by a set
of functions with certain parameters, based on which social
mining application are built. Another advantage of the virtual
sensor model introduced in this paper is the self-determination
of data sharing for every type of application developed with
virtual sensors.

In [18], there are two types of queries that can be performed
on a virtual sensor: one-time queries that return a single result
or persistent queries that return periodic results. When the
query cannot be made over the available physical sensors,
the developer constructs and deploys a virtual sensor using
knowledge of the available data types. The middleware is
in charge of discovering the physical sensors needed by the
application, based on the specified input data types. The high-
level specification of the virtual sensor is translated into low-
level code that runs either locally or relayed to a resource-
constrained sensor within the network. A virtual sensor is de-
ployed only when there are active queries, and the information
from the virtual sensor is accessed on-demand. When the result
is available, a listener is activated and it forwards the results
to the application asynchronously.

The virtual sensor system for environment observation,
namely radar rainfall [9], is designed as a community tool that

facilitates real-time customization of physical sensor data. This
virtual sensor system provides customization and collaboration
through the publication of both the aggregated data and the
workflow composition involved in obtaining them. By making
available to users the template of the workflow used in the
development of the virtual sensor, the data users can select
from a broad range of virtual sensors to further build new
ones and support their research. The prototype is designed in
a three-layer architecture: the bottom layer contains a variety
of remote heterogeneous sensor; the middle layer defines the
virtual sensor abstraction layer; the top layer is a web-based
collaboration interface through which users deploy and visual-
ize new instances of the virtual sensors by using the published
workflows. In contrast to this three-layer approach, the model
introduced in this paper allows the composition of multiple
layers and application graphs of virtual sensors. Moreover, an
additional component, namely the filter, introduces the option
to control the availability of the output stream to all other
environments, in other words a privacy self-determination that
is not captured in [9].

The authors in [19] propose a distributed and scalable
mechanism for enabling virtual sensors in intelligent environ-
ments by relying on service-oriented sensor networks. In a
Service-oriented Sensor Network (SOSN), each sensor is rep-
resented as a service object in a service framework that allows
their dynamic discovery and composition into applications. A
user issues a query to the virtual sensor framework that triggers
the dynamic composition of physical sensor services into
virtual sensors. Similar to [9], the framework is also designed
as a layered structure. However, the architecture consists of
four layers, instead of three: the physical layer that contains a
variety of sensors that monitor different aspects of the physical
space; the node layer that is built by a distributed set of
hardware nodes, which integrate sensors from the physical
layer and export their service representations to the layers
above; the service layer that contains service representations of
all sensors and actuators connected to the hardware nodes; the
application layer that access sensors via their respective service
objects. The node layer is the additional layer introduced
for implementing aggregation by virtual sensors, which, in
contrast, is provided by the service layer in [9] via a distributed
and scalable approach. Privacy issues, raised by data collection
and sharing, are not addressed.

VII. CONCLUSION AND FUTURE WORK

This paper concludes that the model of virtual sensors
is a promising design approach for building ubiquitous so-
cial mining services that are by design, open, decentralized,
privacy-preserving and participatory. This paper shows how
the Planetary Nervous System can be engineered according to
the model of virtual sensors to provide such complex services.
Two privacy control levels for logging and sharing data are
realized in the Planetary Nervous System using the model of
virtual sensors. Moreover, social mining applications can be
incrementally developed by linking data streams of reusable
virtual sensors in application graphs. This modular and com-
positional approach for application development is relevant
for crowd-sourcing activities as it stimulates engagement and
innovation by building communities. Performance evaluations
of virtual sensors in the Planetary Nervous System confirm the
feasibility of the model.



Future work focuses on further designing applications of
virtual sensors such as the sentiment and activity sensor that
will allow crowd-sourced building of more complex social
mining applications using real-time data exchanged across
inter-connected ubiquitous devices. We envision the emergence
of an open virtual sensor ecosystem through which participa-
tory citizens can contribute and acquire social mining services
as public good.
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