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Decentralized Planning of Energy Demand for the
Management of Robustness and Discomfort

Evangelos Pournaras, Matteo Vasirani, Robert E. Kooij and Karl Aberer

Abstract—The robustness of Smart Grids is challenged by un-
predictable power peaks or temporal demand oscillations that can
cause black-outs and increase supply costs. Planning of demand
can mitigate these effects and increase robustness. However, the
impact on consumers in regards to the discomfort they experience
as a result of improving robustness is usually neglected. This
paper introduces a decentralized agent-based approach that
quantifies and manages the trade-off between robustness and
discomfort under demand planning. Eight selection functions of
plans are experimentally evaluated using real data from two
operational Smart Grids. These functions can provide different
quality of service levels for demand-side energy self-management
that capture both robustness and discomfort criteria.

Index Terms—robustness, discomfort, planning, demand, tree
topology, Smart Grid

I. INTRODUCTION

The main operational objective of Smart Grids is to match
energy supply and demand. The extent to which supply can
meet demand or demand can be adjusted to certain supply
is an indication of network and system robustness. Demand-
side energy management plays a crucial role in robustness as
micro-generation via distributed renewable energy resources
and technologies such as electrical vehicles make matching
supply and demand challenging [1], [2], [3]. Yet, in demand-
side energy management, robustness by itself cannot capture
the dynamics of Smart Grids. Robustness has an impact on
human factor that is often neglected or under-emphasized [4],
[3], [5], [6].

This paper claims that improving robustness via demand-
side energy management causes a level of discomfort for
consumers. The discomfort cost that consumers experience in
order to realize a more robust Smart Grid is referred to as
quality of service under demand-side energy self-management.
The goal of this paper is to quantitatively evaluate trade-offs
between robustness and discomfort under demand planning.
These trade-offs can be managed via selections performed by
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agents that plan the demand of consumers. The performance
of different selection schemes is experimentally evaluated with
real data from two operational Smart Grids. Results show that
quality of service, with respect to robustness and discomfort,
is manageable.

This paper is outlined as follows: Section II illustrates the
main concepts of decentralized demand planning. Section III
illustrates the plan generation process. Section IV outlines
how local and coordinated selections of plans is performed.
Section V shows how robustness and discomfort are computed.
It also illustrates how the data of two Smart Grid projects are
used in the experimental evaluation that follows in Section VI.
Finally, Section VII concludes this paper and outlines future
work.

II. ROBUSTNESS VS DISCOMFORT IN DEMAND PLANNING

Demand planning of a consumption source is defined in this
paper as the computation of a time series with the amount of
energy intended for consumption by this source in a future
period of time T . Consumption sources in demand-side energy
management can be defined at different aggregation levels.
For example, the household appliance, the wall outlet, the
meter of a house or even the feeder of a neighborhood are all
different aggregation levels at which demand can be planned.
For simplicity, this paper studies demand-planning at the level
of household meters, yet, the approach illustrated in this paper
can be extended to other aggregation levels as well.

Planning of demand can be applied as a proactive approach
for creating a more homogeneous demand curve via (i) load-
shifting and/or (ii) load-adjustment. The former action shifts
load from high peak times to low peak times without a
significant influence in the average load over time [4]. The
latter action decreases (or increases) average load via, for
example, incentives mechanisms [5]. Both types of action can
be applied to improve robustness by preventing disruptions,
such as black-out events, or minimize their impact in case
they occur [7]. They can be also used for a more efficient
utilization of energy resources, e.g., renewables [8].

On the other hand, discomfort refers to the impact that
consumers experience on their lifestyle by load-shifting and
load-adjustment performed to obtain a higher robustness. This
paper distinguishes two types of discomfort that consumers
may experience: (i) shifting discomfort and (ii) adjustment
discomfort. Shifting discomfort is related to the inconvenience
experienced by load-shifting. For example, if planned demand
suggests the availability of warm water for showering at later
or earlier time than the intended one, this is an indication
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of discomfort. Adjustment discomfort is related to the in-
convenience experienced by load-adjustment. For example, if
planned demand suggests lower demand than the intended one
for heating during winter, this is an indication of discomfort.
However, if the planned demand is higher than the intended
one, this is an indication of negative discomfort, assumed to
be perceived as comfort. Section V shows how discomfort
can be computed in the context of two operational Smart Grid
projects.

Demand-side energy management is often performed in
a centralized fashion with utilities companies having a sig-
nificant level of control in demand planning. This approach
raises several issues related to scalability and privacy. Costly
investments in computing resources are required by utility
companies in order to store and process a large amount
of streaming data originated by consumers [9]. Moreover,
detailed information about household demand can be used
to extract information about the lifestyle of consumers re-
sulting in violation of their privacy [10]. This paper studies
an alternative decentralized approach for demand-side self-
management: software agents represent the demand prefer-
ences of consumers, control their demand by generating a set
of possible plans Pi = {p1

i , ...,p
l
i}, ∀ agent i, and specify

the selected plan si ∈ Pi for execution according to criteria
defined by a selection function. Possible plans are actually
alternative demand time series for the same future period of
time.

Agents can generate two types of possible plans in regards
to the discomfort that these plans cause to consumers when
executed: (i) equivalent and (ii) non-equivalent possible plans.

Equivalent possible plans are assumed to have a similar
impact on the discomfort of consumers. In contrast to lighting
sources or television, generating equivalent possible plans
is feasible for thermostatically controlled appliances whose
operation can be planned without significant disturbance in
the lifestyle of consumers [11].

However, possible plans can be non-equivalent as they may
cause different levels of discomfort, e.g., possible plans with
varied level of average demand (over the planning time). This
paper focuses on planning of demand based on non-equivalent
possible plans. By adopting non-equivalent possible plans, two
opposing objectives need to be met: maximizing robustness
of Smart Grids while minimizing discomfort that consumers
experience. If consumers need to decrease their demand as a
response to a power peak that threatens the stability of Smart
Grids, discomfort is unavoidably increased.

III. PLAN GENERATION

Figure 1 illustrates the concept of the plan generation illus-
trated in this section. Possible plans can be locally generated
by clustering historical demand data. Clustering groups time
series demand data sampled every certain time period, e.g.,
every day, for a total period of time, e.g., a week or a
month. Grouping is based on the computation of a proximity
metric such as the Euclidean or the Manhattan distance [12].
The number of clusters is usually part of the clustering
parameterization and represents the number of possible plans
that agents generate.

Fig. 1. Plan generation based on historical demand data.

The total period of time from which historic data are used
as input in clustering can be defined by a sliding clustering
window. For example, the CAISO demand forecasting method-
ology predicts demand based on the energy consumption of
the past 10 days [13]. The same principle can be adopted for
the generation of possible plans in a following day [14].

Each possible plan is devised by computing the represen-
tative demand time series of each cluster. More specifically,
each possible plan is the medoid of a cluster and is computed
by the median of the historical time series that belongs to this
cluster. In clustering, the centroid, computed by the mean, is
often employed as the center of clusters. However, this paper
considers the centroid as not appropriate for demand planning.
The centroid is a computed time series that is not necessarily
included in the input historical demand data. The historic de-
mand can be used to reason that the centroid is actually a non-
possible plan as consumers have not necessarily devised such a
demand configuration before via their consumption devices. In
contrast, the medoid is a plan that is in theory achievable as it
corresponds to a consumption pattern observed in the historical
consumption data and therefore it is a repetition of an earlier
consumption pattern. This approach can be extended to capture
temporal constraints. For example, if in the next three hours
the consumption should not exceed a certain value, then the
medoids that do not meet this constraint can be excluded from
the plan generation.

A critical aspect in the clustering process is the number of
clusters l that corresponds to the number of possible plans.
Previous experimental work shows that a higher number of
possible plans in demand-side energy management results in
improved robustness for Smart Grids [11], [15]. A higher
number of possible plans means that agents have a higher
degree of freedom to adjust demand according to system ob-
jectives. However, a higher number of possible plans increases
computational cost1 and causes a lower cluster size on average.
A cluster with a lower size results in a devised possible plan
that is less representative of the past energy consumption. This
effect is interpreted as providing a higher level of authority to
agents to autonomously reason about the level of household
demand and is referred to in this paper as the intervention
level of home automation technologies for demand planning.
The intervention level Iji of a possible plan j generated by

1The increased computational cost concerns the generation process but also
the optimization performed by EPOS as illustrated in Section IV.
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agent i is defined as follows:

Iji = 1− Cji∑l
p=1 C

p
i

, (1)

where the relative cluster size is computed by the size of the
cluster Cji , j ∈ {1, ..., l} and the sum

∑l
p=1 C

p
i of the total

number of historic time series sampled for clustering.

IV. PLAN SELECTION

Agents select and execute one of their possible plans to
meet different system objectives of Smart Grids. Two types of
agent selections are distinguished in this paper: (i) local and
(ii) coordinated selections.

A local selection of an agent is independent of other agent
selections. For example, selecting the plan with the minimum
average energy consumption is a local selection that each agent
can perform individually without exchanging information with
other agents. However, for more complex system objectives
related to load-shifting, agent selections are interdependent and
coordination between agents is required.

Centralized coordination is not a scalable approach as the
complexity for computing the optimum combination of agent
selections is exponential. More specifically, in a network of
n agents with l number of possible plans per agent, the
complexity of a brute-force operation is O(ln). A brute-force
operation computes the sum of all combinations between the
possible plans of agents. The sum of each combination com-
puted by an agent i is referred to as the combinational plan cji .
This paper focuses on large-scale decentralized coordination
of agent selections using EPOS, the Energy Plan Overlay Self-
stabilization system [11], [15]. In EPOS, agents are organiza-
tionally structured in a tree topology through which they inter-
act and coordinate their selections as illustrated in Figure 2.
EPOS decreases computational complexity to O(lc), where
c is the number of children per agent for a c-ary tree. Fault
tolerance can be provided with self-organization mechanisms
such as AETOS [16] that builds and maintains reconfigurable
tree topologies in dynamic distributed environments.

Fig. 2. Agents of EPOS structured in a tree topology to coordinate their plan
selection.

Coordination in EPOS is performed in bottom-up consec-
utive coordination steps between children and their parents.
During a coordination step, the children of a tree level provide
to their parents their possible plans together with the summa-
tion of all selections performed in the branch underneath. For
each agent i with c children, this summation is the aggregate

plan ai =
∑c
v=1 av =

∑
h∈|Bi| sh, ∀ agent h belonging to

the branch Bi underneath agent i. The possible and aggregate
plans are input in a selection function. The output of the
selection function indicates the selected plan of each child. The
process of consecutive coordination steps repeats up to the root
that broadcasts to each agent i the global plan g =

∑n
i=1 si

of the system that is the summation of all agent selections.
The broadcast completes the coordination phase after which
each selected plan si can be executed. More details about the
algorithm execution and the agent interactions are illustrated
in earlier work [11], [15].

This paper studies and evaluates the selection functions of
Table I. The functions that perform local selections receive
as input local information such as each possible plan pji and
intervention level Iji . MAX-DEMAND and MIN-DEMAND are the
actual upper and lower bound of demand adjustment. They
also represent the maximum adjustment comfort and discom-
fort that consumers can experience respectively as illustrated
in Section V. The functions for coordinated selections receive
for input the aggregate plan ai and each combinational plan
cji . The homogeneity of the planned demand over time is
captured by these functions with various metrics such as the
standard deviation (MIN-DEVIATIONS), the relative standard
deviation (MIN-RELATIVE-DEVIATIONS), the load factor [17]
(MAX-LOAD-FACTOR) and the entropy [6] (MAX-ENTROPY).

TABLE I
SELECTION FUNCTIONS FOR DEMAND-SIDE ENERGY MANAGEMENT.

Selection Function Definition

RANDOM:
l

arg rand
j=1

(p
j
i )

Local MIN-DEMAND:
l

argmin
j=1

{avg(pj
i )}

MAX-DEMAND:
l

argmax
j=1

{avg(pj
i )}Selections

MIN-INTERVENTIONS:
l

argmin
j=1

(Ij)

MIN-DEVIATIONS:
lc

argmin
j=1

{σ(ai + c
j
i )}

Coordinated MIN-RELATIVE-DEVIATIONS:
lc

argmin
j=1

{
σ(ai + cj

i )

avg(ai + cj
i )

}

MAX-LOAD-FACTOR:
lc

argmax
j=1

{
avg(ai + cj

i )

max(ai + cj
i )

}
Selections

MAX-ENTROPY*:
lc

argmax
j=1

(−
T∑

t=1

u
t
i log u

t
i)

* ut
i =

at
i+cti∑T

t=1(at
i
+ct

i
)

is the demand utilization at planning time t.

For the purpose of this paper, the functionality of EPOS is
significantly extended. More specifically, the contributions of
this paper to EPOS are the following: (i) Scope extension from
the aggregation level of single devices to the aggregation level
of household. (ii) Scope extension from equivalent to non-
equivalent possible plans. (iii) Introduction of several other
selection functions besides MIN-DEVIATIONS and REVERSING-
DEVIATIONS [11], [15]. (iv) Evaluation of EPOS using real
data from operational Smart Grids instead of synthetic data.

V. VALIDATION IN SMART GRID PROJECTS

The actual robustness and discomfort that consumers expe-
rience via demand planning is validated a posteriori using real
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consumption data from two operational Smart Grid projects,
the Electricity Customer Behavior Trial2 in Ireland and the
Olympic Peninsula Smart Grid Demonstration3 in the USA.
The data of the projects are referred to in this paper as
CONTROL-DATA d and are used for (i) generating possible
plans and (ii) making quantitative comparisons with the global
plan g.

The possible plans of agents are generated by clustering
time series consumption data of the past 10 days that is the
length of the sliding clustering window. The number of plans
is selected based on two different criteria: (i) statically, by
assigning a default number of plans to each agent and (ii)
dynamically by computing the number of plans based on
project data. In the former case, the minimum number of l = 2
is selected. This number minimizes the intervention level and
the computational cost in each agent. In the latter case, the
number of possible plans is computed by letting agents reason
about the preferences of consumers based on selections they
made in the context of each project, e.g., survey answers and
temperature setpoints.

A robustness metric is introduced in this paper to compare
the demand homogeneity achieved with each selection func-
tion. Robustness can be quantified by the distance of each
demand value in the computed global plan g from its average
avg(g) that represents the optimum ‘flat’ demand curve. This
distance can be compared with the respective distance of
CONTROL-DATA d. The robustness R between the two demand
curves is computed by the mean square error as follows:

R =
1

T

T∑
t=1

ρt, (2)

where:

ρt =

{
(ĝt − d̂t)2 if ĝt ≥ d̂t
−(ĝt − d̂t)2 if ĝt < d̂t

, (3)

and:

ĝt = 1− |g
t − avg(g)|
avg(g)

and d̂t = 1− |d
t − avg(d)|
avg(d)

(4)

Normalization is performed to remove information about
the level of demand between the global plans formed by
different selection functions. A robustness value by itself
cannot indicate quantitatively the homogeneity of a selection
function. Normalization provides (i) more unbiased relative
comparisons between different selection functions and (ii) a
better distinction of robustness from the following discomfort
metrics that capture the different demand levels rather than the
homogeneity.

Shifting discomfort is computed by the root mean square
error between the selected plans and CONTROL-DATA for each
agent i:

2http://www.ucd.ie/issda/data/commissionforenergyregulationcer/ (last ac-
cessed September 2013)

3https://svn.pnl.gov/olypen/ (last accessed September 2013)

Ds =

n∑
i=1

ws
i

√√√√ 1

T

T∑
t=1

(sti − dti)2

 (5)

The weight ws
i of each agent i quantifies the interest of each

consumer for load-shifting. A high value of ws
i shows that a

consumer is not so self-interested in load-shifting or the impact
of shifting discomfort is perceived more ‘negative’ compared
to consumer with a low ws

i. The value of this weight is selected
in the context of the Smart Grid projects illustrated in the rest
of this section.

Adjustment discomfort is computed by summing positive
and negative errors between the selected plans and CONTROL-
DATA for each agent i:

Da =

n∑
i=1

wa
i

T∑
t=1

(sti − dti) (6)

The weight wa
i of each agent i is related with how ‘negative’

different consumers perceive the adjustment discomfort due
to demand reduction. Similarly to ws

i, the values of wa
i are

selected within the context of the Smart Grid projects.

A. The Electricity Customer Behavior Trial project

This project is a cost-benefit analysis that assesses the
impact on electricity consumption of consumers in Ireland.
The project ran in the period 2009-2010 with 5000 residential
and business consumers participating. The data are cleaned
from missing values and filtered out to contain the energy
consumption time series of 782 residential consumers that
belong to the control group4.

Agents reason about the number of possible plans based on
the following two questions5:

Question 1. My household may decide to make minor changes
to the way we use electricity.

Question 2. My household may decide to make major changes
to the way we use electricity.

The answer aq in each of the above question q belongs to
{1, ..., 5}, where 1 stands for a strong agreement and 5 stands
for a strong disagreement. Table IV of Appendix A illustrates
how agents reason about the number of possible plans they
generate6. The number of plans computed by this algorithm is
referred to in this paper as l = f1(z = x). The main intuition
behind the generation algorithm is the normalization of the
answers to the two questions a1, a2 in l ∈ {z − 2, ..., z + 3}.

4These consumers are not affected by the dynamic pricing schemes applied
for the purpose of the project.

5The question block ‘55122’ of the pre-trial residential survey contains
these two questions.

6From the total number of 782 residential consumers, 132 of these do not
participate in the pre-trial survey. For 116 of these consumers, the question
block ‘54132’ of the post-trial survey is used for computing Table IV. This
question block is the respective post-trial question block ‘55122’ of the pre-
trial survey (My household made minor/major changes to the way we use
electricity.). For the final 16 residential consumers that do not participate in
neither of the pre-trial nor post-trial surveys, the number of possible plans is
computed by the median number of possible plans in the the rest of the 766
consumers.
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The constant z is used as a scaling factor for the number of
possible plans in the generation process.

The weights of discomfort are computed by the answers of
consumers to the following two questions:

Question 3. I am interested in changing the way I use
electricity if it helps environment7.

Question 4. It is too inconvenient to reduce our usage of
electricity8.

Based on the possible answers {1, ..., 5}, where 1 stands for
a strong agreement and 5 stands for a strong disagreement,
the weights ws

i and wa
i for each agent i are computed by

normalizing the answers in the range [0, 1].

B. The Olympic Peninsula Smart Grid Demonstration project

This project assesses the adjustment of individual energy use
based on price signals exchanged within a two-way bidding
market [18]. The project concerns the period of March 2006
to March 2007 with 112 household participants regionally dis-
tributed in the Olympic Peninsula of the USA. The data subset
from November 2006 to March 2007 is selected during which
the fewest number of missing values is observed. The demand
of each consumer is captured every 5 minutes. Demand data
are aligned to the sampling rate of the Electricity Customer
Behavior Trial project by aggregating 12 consecutive demand
bids of each hour to a single hourly demand bid.

Demand data are filtered out to contain 29 consumers that (i)
either belong to the CONTROL group or have a FIXED type of
contract and (ii) have lower than 20% of their values missing.
Two extra consumers are excluded as their demand time series
contains a large proportion of zero values. Therefore the final
number of consumers used is 27. The missing values in the
final consumers are interpolated by computing the average
demand values in the past and future 10 days.

In the context of this project, the demand adjustment is
achieved by dynamically modifying the temperature setpoints
of various household devices. Motivated by this approach, the
number of possible plans l = f2(z = x) is defined by a
function that captures the selected temperature setpoints of
consumers during project runtime. More specifically, the range
of minimum and maximum temperature setpoints selected is
normalized to l ∈ {z, ..., z + 4} for a given constant z.

This project contains a significantly lower number of par-
ticipants than the Electricity Customer Behavior Trial project
resulting in a low statistical significance in the illustrated
results. Most demonstration projects are small in scale and
it is challenging to validate demand-side energy management
mechanisms in large-scale systems. Nonetheless, this project
provides a second confirmation of the findings of this paper.
It also shows how the clustering methodology illustrated in
this paper can be applied in different projects, for example,
how the number of possible plans can be computed in two
different ways in the context of each project: survey questions
or choices of temperature setpoints.

7This is question ‘4331’ in the residential pre-trial survey.
8This is question ‘4352’ in the residential pre-trial survey.

VI. EXPERIMENTAL EVALUATION

This section quantitatively evaluates the trade-off between
robustness and discomfort under different selection func-
tions. An implementation of the hierarchical clustering algo-
rithm [19] in Weka9 is used for generating the possible plans
of agents. Two z values are evaluated for each project10: z = 2,
z = 3 for the Electricity Customer Behavior Trial project
and z = 1, z = 2 for the Olympic Peninsula Smart Grid
Demonstration project. The first choices of z = 2 and z = 1
for each project bound the lowest values of l to the minimum
values of 0 and 1. The second choices of z = 3 and z = 2
shift the distribution by 1. The normalized histograms for each
z value and weights of discomfort are shown in Appendix A.

Agents are engineered as distributed application of Pro-
topeer [20] that is a prototyping toolkit for large-scale dis-
tributed systems. Agents perform local selections or coor-
dinated ones by implementing EPOS in Protopeer as well.
Each coordination phase of EPOS runs for 10 different 3-
ary tree topologies. Each topology is built by the AETOS
overlay service [16]. AETOS self-organizes agents in different
random positions for each tree topology to capture the effect
of topological positioning. The effect of different types of
tree topologies is evaluated in earlier work [21], [15]. Each
coordination phase of EPOS concerns a random day of the
week and simulates one demand-response event.

A. Robustness vs discomfort

Table II and III summarize the performance of the selection
functions in each project. The data illustrated concern the
average of the total period of time studied in each project.
Performance is measured by the three metrics introduced
in this paper, robustness, shifting discomfort and adjustment
discomfort. Three planning generation schemes are evaluated
in each project, one static with l = 2 and two dynamic.

Robustness improves for every selection function that
performs coordinated selections in both projects and every
generation scheme. The highest improvement is achieved
by the MAX-ENTROPY and MIN-RELATIVE-DEVIATIONS. MIN-
INTERVENTIONS does not have a significant influence on ro-
bustness. As the average number of possible plans increases
more than l = 2, robustness also increases in average 52%,
for l = f1(z = 2), 61% for l = f1(z = 3), 30%, for
l = f2(z = 1), and 39%, for l = f2(z = 2), confirming earlier
findings concerning equivalent possible plans [11], [15].

Shifting discomfort maximally decreases under MIN-
INTERVENTIONS and MIN-DEMAND. MAX-DEMAND, MAX-
ENTROPY and RANDOM cause the highest shifting discomfort.
The high robustness of MAX-ENTROPY is actually achieved
through an increase in shifting discomfort. The lowest shifting
discomfort under coordinated selections is achieved by MIN-
DEVIATIONS. Compared to l = 2, shifting discomfort is
influenced by the increase in the number of possible plans
as follows: 0.4% average increase for l = f1(z = 2), 0.3%

9http://www.cs.waikato.ac.nz/ml/weka/ (last accessed September 2013)
10If l ≤ 1, then agents select the median time series from the historic

sliding window
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TABLE II
PERFORMANCE OVERVIEW FOR THE ELECTRICITY CUSTOMER BEHAVIOR TRIAL PROJECT.

Selection Function R (x ∗ 10−3) Ds Da
l: 2 f1(z = 2) f1(z = 3) 2 f1(z = 2) f1(z = 3) 2 f1(z = 2) f1(z = 3)

RANDOM: -0.50 -0.08 0.08 83.11 81.75 82.08 -349.64 -327.46 -311.32
Local MIN-DEMAND: 2.72 5.08 6.68 66.90 67.51 68.07 821.63 1053.52 1187.48
Selections MAX-DEMAND: -5.37 -5.31 -5.65 99.42 96.48 97.39 -1516.07 -1679.63 -1809.30

MIN-INTERVENTIONS: 0.98 1.17 1.08 65.74 66.59 67.68 594.17 609.74 586.83
MIN-DEVIATIONS: 7.79 14.28 19.18 69.03 69.51 70.18 614.72 752.65 830.76

Coordinated MIN-REL-DEVIATIONS: 9.23 16.22 21.11 74.26 74.02 74.83 143.83 169.42 196.09
Selections MAX-LOAD-FACTOR: 4.83 8.17 10.68 79.30 79.30 79.30 -188.86 -188.86 -235.40

MAX-ENTROPY: 9.64 22.05 22.04 99.42 99.42 99.42 -1516.07 -1516.07 -1516.07

Low performance High performance

TABLE III
PERFORMANCE OVERVIEW FOR THE OLYMPIC PENINSULA SMART GRID DEMONSTRATION PROJECT.

Selection Function R (x ∗ 10−3) Ds Da
l: 2 f2(z = 1) f2(z = 2) 2 f2(z = 1) f2(z = 2) 2 f2(z = 1) f2(z = 2)

RANDOM: 21.57 47.99 47.13 47.40 40.54 42.08 -108.95 -80.56 -96.92
Local MIN-DEMAND: -2.83 33.28 17.60 38.32 33.57 34.15 119.27 153.76 191.33
Selections MAX-DEMAND: 38.37 55.34 60.51 57.03 48.18 51.37 -338. 55 -314.20 -405.29

MIN-INTERVENTIONS: -11.36 46.76 36.68 38.59 32.19 32.60 90.26 87.86 95.12
MIN-DEVIATIONS: 70.97 113.13 133.68 39.54 34.37 35.06 73.98 91.31 111.62

Coordinated MIN-REL-DEVIATIONS: 127.38 138.38 168.16 46.0 39.48 41.09 -123.49 -95.60 -117.12
Selections MAX-LOAD-FACTOR: 112.07 119.80 152.95 47.12 41.04 41.49 -136.66 -110.16 -113.85

MAX-ENTROPY: 123.53 134.24 165.85 45.09 39.39 40.41 -97.74 -96.14 -103.80

Low performance High performance

average decrease for l = f1(z = 3), 14% average increase for
l = f2(z = 1) and 11.4% average increase for l = f2(z = 2).

Adjustment discomfort maximally decreases under MAX-
DEMAND and MAX-ENTROPY. MIN-DEMAND and MIN-
DEVIATIONS cause the highest adjustment discomfort. The high
robustness of MIN-DEVIATIONS is achieved through an increase
in adjustment discomfort, in contrast to MAX-ENTROPY that
achieves high robustness by increasing shifting discomfort.
The increase in the number of possible plans influences
adjustment discomfort as follows: 19% average increase for
l = f1(z = 2), 23% average increase for l = f1(z = 3),
30.3% average increase for l = f2(z = 1) and 15.9% average
increase for l = f2(z = 2).

This section also illustrates the cumulative distribution func-
tions of robustness and discomfort for each selection function
and project. A cumulative distribution function FX(x) =
Pr(X ≤ x) for X = R,Ds or Da shows how robustness and
discomfort are distributed during the runtime of the projects.
Therefore, they provide detailed observations compared to the
results of Table II and III. Cumulative distribution functions
focus on f1(z = 2) and f2(z = 2).

Figure 3 illustrates the cumulative distribution functions
of robustness for the two projects. The selection functions
that perform coordinated selections are shifted to positive
robustness values, whereas, local selections and especially
MAX-DEMAND are shifted towards negative robustness values.
The Electricity Customer Behavior Trial project concerns data
of a higher number of consumers and a longer period of time
than the Olympic Peninsula Smart Grid Demonstration project.
This explains the higher overlap of the cumulative distribution
functions in the second project.

Figure 4 illustrates the cumulative distribution functions of
shifting discomfort for the two projects. MIN-INTERVENTIONS
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Fig. 3. Cumulative distribution functions of robustness R for z = 2.

and MIN-DEMAND are positioned to values of lower shifting
discomfort in contrast to MAX-DEMAND that is clearly posi-
tioned to higher values. The selection functions that perform
coordinated selections are positioned to higher values com-
pared to MIN-INTERVENTIONS and MIN-DEMAND.

Figure 5 shows that under local selections the cumulative
distribution functions of adjustment discomfort are shifted to
negative values, yet, MIN-INTERVENTIONS and MIN-DEMAND

cause adjustment discomfort and that is why their distributions
are shifted to positive values. Under coordinated selections the
distributions vary significantly, with MAX-LOAD-FACTOR and
MAX-ENTROPY shifted to negative values that cause comfort
to consumers, whereas, the rest of the selection functions are
mainly located between positive and negative values.

This observation can be explained by the fact that co-
ordinated selections acquire a flat demand curve by either
increasing or decreasing the average demand, e.g., 19/01/2010
and 28/05/2010 respectively for the Electricity Customer
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Fig. 4. Cumulative distribution functions of shifting discomfort Ds for z = 2.
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Fig. 5. Cumulative distribution functions of adjustment discomfort Da for
z = 2.

Behavior Trial project. Therefore, adjustment discomfort is
highly influenced by temporal factors related to the weather
and different choices that consumers make in different seasons
of a year. The demand curves in the next section confirm this
explanation.

B. Demand curves

Figure 6 illustrates the demand curves of CONTROL-DATA

and the global plans of each selection function on 19/01/2010
and 28/05/2010 under l = 2. These data concern the Electricity
Customer Behavior Trial project. CONTROL-DATA has two main
demand peaks, one low peak in the morning between 06:00-
08:00 and one high peak in the evening between 17:00-21:00.
The morning peak is more distinguishable on 28/05/2010 than
19/01/2010, whereas, the evening peak is higher and more
distinguishable in the winter day.

Figure 7 illustrates the demand curves of CONTROL-DATA

and the global plans of each selection function on 16/01/2007
for the Olympic Peninsula Smart Grid Demonstration project.
The minimum number of possible plans l = 2 is selected in
this case as well. The high winter peak is observed in the
morning, with a low evening peak following.

The MAX-DEMAND and MIN-DEMAND in Figure 6a, 6c
and 7a are the upper and lower bounds that form the demand
envelope of planning within which the performance of all
selection functions lies. MIN-INTERVENTIONS results in plan
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(d) Coordinated selections on
28/05/2010.

Fig. 6. The actual demand curve and the demand of the global plans for the
Electricity Customer Behavior Trial project under l = 2.
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Fig. 7. The actual demand curve and the demand of the global plans for the
Olympic Peninsula Smart Grid Demonstration project on 16/01/2007 under
l = 2.

selections with low energy consumption. This means that
possible plans with extreme high values are not the cluster
with the largest size. In Figure 6b and 6d, the global plans
are observed above the CONTROL-DATA during most hours on
19/01/2010 compared to 28/05/2010. This means that robust-
ness requires a demand increase for a longer period of time
during a winter day compared to a spring day. This demand
increase is the actual load-shifting performed to suppress the
high power peak. MIN-DEVIATIONS decreases the high peak
up to 9% on 19/01/2010 and 16% on 28/05/2010 for the
Electricity Customer Behavior Trial project. Respectively, the
high peak decreases 44% on 16/01/2007 for the Olympic
Peninsula Smart Grid Demonstration project.
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C. Quality of service

This section shows how performance trade-offs between
robustness and discomfort can determine quality of service
in demand-side energy self-management. More specifically,
assume that consumers, utility companies or system operators
need to choose one of the selection functions that satisfies
certain robustness and discomfort criteria. Choice is performed
as follows:

argmax
o∈F

= αrr
o + βrs

o + γra
o, (7)

where rr
o, r

s
o, r

a
o ∈ [0, 7] are the ranks of a selection

function o ∈ F = {RANDOM, MIN-DEMAND, MAX-DE-
MAND, MIN-INTERVENTIONS, MIN-DEVIATIONS, MIN-RELATI-
VE-DEVIATIONS, MAX-LOAD-FACTOR, MAX-ENTROPY} for the
three respective performance metrics: robustness R, shifting
discomfort Ds and adjustment discomfort Da. Ranking is
derived by the results of Table II and III with the value of zero
corresponding to the lowest performance and the value of 7 to
the highest performance. The weights α, β and γ indicate the
relative ‘importance’ of each performance metric and it holds
that α+ β + γ = 1.

The relation between a certain choice of a selection function
and the threshold values of α, β and γ that result in this
selection can be computed and visualized using decision trees
built by the C4.5 algorithm [22]. Learning is performed by
a 10-fold cross-validation of a training set generated using
formula (7) with 66 different threshold combinations of α, β,
and γ under a step-wise increment of 0.1. Each decision tree
concerns the aggregate results of all temporal demand data in
each project, yet, such trees can be computed for more specific
time periods, e.g., seasons or months.

MAX-DEMAND MAX-ENTROPY

MIN-REL-
DEVIATIONS MAX-ENTROPY

MIN-REL-
DEVIATIONS

MIN-
INTERVENTIONSMAX-DEMAND

Fig. 8. Decision tree of selection functions for the Electricity Customer
Behavior Trial project.

Figure 8 illustrates the decision tree for the performance
results of the Electricity Customer Behavior Trial project.
This tree contains two selection functions that perform local
selections (MAX-DEMAND and MIN-INTERVENTIONS) and two
selection functions that perform coordinated selections (MIN-
RELATIVE-DEVIATIONS and MAX-ENTROPY). MAX-DEMAND is
chosen when β ≤ 0.3 and α ≤ 0.1. MIN-INTERVENTIONS is
chosen under β > 0.3 and α ≤ 0.3. However for criteria that
define high α, MAX-ENTROPY and MIN-RELATIVE-DEVIATIONS

are selected depending on the values of discomfort. In this
case, lower adjustment discomfort weights result in choices
of MIN-RELATIVE-DEVIATIONS over MAX-ENTROPY.

Fig. 9. Decision tree of selection functions for the Olympic Peninsula Smart
Grid Demonstration project.

Figure 9 illustrates the respective decision tree for the
Olympic Peninsula Smart Grid Demonstration project. This
tree has lower complexity than the tree of the Electricity
Customer Behavior Trial project. It provides choices between
three selection functions, MAX-DEMAND, MIN-INTERVENTIONS

and MIN-RELATIVE-DEVIATIONS that are determined by the
shifting discomfort and adjustment discomfort.

D. Summary of findings

The main findings of this paper are summarized as follows:
1) MAX-ENTROPY and MIN-RELATIVE-DEVIATIONS achieve

the highest robustness.
2) MIN-INTERVENTIONS achieves the lowest shifting dis-

comfort and MAX-DEMAND the lowest adjustment dis-
comfort.

3) MIN-DEVIATIONS achieves the highest peak shavings.
4) A higher number of possible plans increases robustness

at a cost of higher discomfort.
5) Peak shaving is achieved either via an overall demand

increase or decrease over time.
6) Quality of service under demand planning can be man-

aged by decision trees that compute trade-offs between
robustness and discomfort.

VII. CONCLUSION AND FUTURE WORK

This paper concludes that the trade-off between robustness
and discomfort in demand-side energy self-management is
quantifiable, manageable and can provide different quality of
service levels. More specifically, the experimental validation
with real data from two operational Smart Grid projects
confirms the load-shifting and load-adjustment potential of
various selection functions but also their discomfort impact
on consumers. These selection functions can become a highly
modular element of decentralized demand planning mecha-
nisms such as EPOS [11], [15], in future Smart Grids. Other
factors related to malicious agents and a fair distribution of
discomfort between consumers are part of future work.
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APPENDIX A
SUPPLEMENTAL MATERIAL

Table IV illustrates how the number of possible plans is
generated for the Electricity Customer Behavior Trial project.
As consumers tend to agree more to changes in energy
consumption, the number of plans also increases. If a con-
sumer chooses in the Question 2 for major changes in his/her
electricity, then a higher intervention level is introduced by
increasing the number of possible plans (e.g., conditions 1-3
in Table IV).

TABLE IV
COMPUTING THE NUMBER OF POSSIBLE PLANS FOR THE ELECTRICITY

CUSTOMER BEHAVIOR TRIAL PROJECT. THE CONSTANT z REPRESENTS A
DEFAULT VALUE FOR l.

Condition a1 a2 l
1 * 1 z + 3
2 * 2 z + 2
3 * 3 z + 1
4 3 4 z
5 < 3 4 z + 1
6 > 3 4 z − 1
7 3 5 z − 1
8 < 3 5 z
9 > 3 5 z − 2

Figure 10 illustrates the normalized histograms for the
number of possible plans l in the two Smart Grid projects.
These two histograms are generated according to Table IV
using two different values of z.
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Fig. 10. Normalized histograms for the number of possible plans l.

Figure 11 illustrates the normalized histogram for the two
weights of discomfort based on the answers of consumers in
Question 3 and 4.
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