Measuring and Controlling Unfairness in Decentralized Planning of Energy Demand

Evangelos Pournaras, Matteo Vasirani, Robert E. Kooij, Karl Aberer

Robustness in Smart Grids

Matching supply and demand

via...

demand-side energy management

demand planning

load-shifting

load-adjustment

shifting discomfort

adjustment discomfort

Fairness under Demand Planning

How fair (or unfair) is discomfort distributed among consumers that plan their demand to improve robustness in Smart Grids?

Can we **measure** unfairness?

Can we control unfairness?

Local Data-driven Approach

Measuring Unfairness

- 1. **Discomfort**: distance between planned and actual demand
 - 2. How negative (1) **is perceived** by each consumer, e.g. Q: It is too inconvenient to reduce our usage of electricity

A posteriori measurements of unfairness

- 3. **Normalization** of discomfort values
 - 4. Standard deviation of normalized discomfort values

Smart Grid Projects

1. Electricity Customer Behavior Trial project

782 consumers in Ireland from 01/2010 to 12/2010

2. Olympic Peninsula Smart Grid Demonstration project

27 consumers in the USA from 11/2006 to 03/2007

Realistic (i) plan generation & (ii) discomfort measurements

- 1. Survey question
- 2. Choices of thermostat setpoints

Temporal Influence

Control of Unfairness

Local management of unfairness by tuning the number of generated plans

Conclusions

1. Unfairness in demand planning in temporally influenced

2. Temporal influence is correlated with the seasonal demand levels

3. Unfairness is **locally controllable** by the number of generated plans

4. Higher robustness results in higher unfairness

Questions?

www.EvangelosPournaras.com

e.pournaras@tudelft.nl