Dynamic Intelligent Aggregation Services

Love and Strife in large-scale decentralized systems

Evangelos Pournaras BSc MSc

PhD Candidate

Faculty of Technology, Policy & Management

Systems Engineering Section

PhD Research

Distributed Computing

Multi-level Reconfigurable Self-organization in **Overlay Services**

Dynamic Aggregation Services

Tree Self-organization Services

Love and Strife

"These (elements) never cease changing place continually, now being all united by Love into one, now each borne apart by the hatred engendered of Strife, until they are brought together in the unity of the all, and become subject to it."

Continuous Information Change

Accurate Information Aggregation

Local

Global

The Aggregation Problem

The Aggregation Problem

The Aggregation Problem

Decentralized Aggregation

Gossip-based Aggregation

Aggregation-function dependent

Inaccuracies: Duplicate & outdated values

Tree-based Aggregation

Synopsis Diffusion

Static Values

Routing-dependent

Decentralized Aggregation (Cont.)

DIAS – Dynamic Intelligent Aggregation Service

Modeling of Dynamics

of Possible Aggregates=# of possible states^{# of Nodes}=3¹⁰⁼59049!

Applications

Recommender Systems

Smart Energy Systems

Mutual Aggregation Memberships

Node: Aggregator and Disseminator

Aggregation Session

Aggregation Memberships

Can we **explicitly** store aggregation memberships in a decentrality system?

Can we overcome this problem?

Yes, with the Love and Strife of bloom filters

Probabilistic data structure

Large space savings at a cost of false positives

Bloom Filters

Inconsistent aggregation sessions are possible!

Goal: Minimization of aggregation inaccuracies due to false positives

How?

Mutual membership checks!

Evaluation

DIAS prototype in Protopeer

XSiena Bloom Filter implementation

Node sampling: Gossiping (Peer Sampling Service)

Large-scale network: 1500 nodes

5 possible states/node

Synchronous/asynchronous state changes

Aggregation strategies: EXPOITATION, UPDATE, RANDOM

Evaluation

Evaluation (cont.)

No influence in accuracy under false positive

Why?

Inconsistencies are detected by **mutual membership checks**

Conclusions

Generic-Multiple aggregation functions

Dynamically changing values

Inaccuracies are minimized: Detection of duplicate and outdated values

Mutual memberships checks: False positive tolerance

Questions?

More information

www.evangelospournaras.com

e.pournaras@tudelft.nl

