Adaptive Agent-based Self-organization for Robust Hierarchical Topologies

Evangelos Pournaras, Martijn Warnier, Frances M.T. Brazier

Autonomic Systems Group, Evangelos Pournaras, December 2009
Motivation

Hierarchical topologies ➔ Tree structures

- Aggregation
- Decision-making

- Search
- Information dissemination

Simple in principle

Autonomic Systems Group, Evangelos Pournaras, December 2009
Motivation (cont.)

Distributed systems and tree overlays

- Node / link failures
- Congestions
- Attacks
- Heterogeneity

Sensitive in principle

Autonomic Systems Group, Evangelos Pournaras, December 2009
Problem

Robustness
Minimization of the impact of failures in the topology

Self-organization
Nodes with local knowledge in dynamic environments

Application-dependence
Abstract application to self-organization requirements

Autonomic Systems Group, Evangelos Pournaras, December 2009
Propose

AETOS

The Adaptive Epidemic Tree Overlay Service

Autonomic Systems Group, Evangelos Pournaras, December 2009
Approach
Application requirements abstraction

- Optimization metrics
- Node degree

- Application-dependent
- Application-independent

- Robustness (rank)
- Max # of children

Autonomic Systems Group, Evangelos Pournaras, December 2009
Target topology

Optimization problem:

Sort nodes according to their robustness and max # of children

Autonomic Systems Group, Evangelos Pournaras, December 2009
AETOS Agent

3 type of views

Random View ➔ Proximity View ➔ Tree View

2 agent behaviors

Greedy ➔ Myopic

Autonomic Systems Group, Evangelos Pournaras, December 2009
Information flow

Local Self-organization

Local Robustness \(r = 58 \)

Random View
Candidate Parents
Candidate Children
Tree View

Gossip

Autonomic Systems Group, Evangelos Pournaras, December 2009
Proximity View Reconfigurations

Downgrade reconfiguration (rejection, removal)

Agent picks candidates with lower robustness than the ones it tried before
Example

Autonomic Systems Group, Evangelos Pournaras, December 2009
Example: Myopic Agents
Example: Greedy Agents
Conclusions & Future Work

- **Building & maintaining** hierarchical structures in distributed environments is **challenging**
- Importance: **Robustness, self-organization, application-independence**
- 3-layer architecture:
 - Bottom: randomness-> **proactive robustness**
 - Middle: proximity-> **reconfigurable knowledge**
 - Top: connectivity-> **reactivity**

- Further large-scale experimentation in dynamic settings, e.g. changing rank values
- Test in different applications, e.g. energy management, application-level multicast

Autonomic Systems Group, Evangelos Pournaras, December 2009
Questions?

Autonomic Systems Group, Evangelos Pournaras, December 2009