A Survey and a Proposed Approach on Robust Tree Overlays

Evangelos Pournaras

Vrije Universiteit Amsterdam

June 2009

Focus

Proposed Approach: AETOS, the Adaptive Epidemic Tree Overlay Service

Tree Structures

Tree Overlays and Distributed Systems

Central Approaches

- Unscalable and not an option for every type of application
- Disregarded in this survey

General Approach for Reliable Trees

Related Surveys

- Focus on one application scenario, e.g. Application Level Multicast
- Classify and examine methods according to the cross-link, in-tree or multiple-tree redundancy
- Tree vs. mesh based systems

- S. Birrer and F. E. Bustamante. A Comparison of Resilient Overlay Multicast Approaches. IEEE Journal on Selected Areas in Communications, 25(9):1695–1705, 2007.
- Z. Li and Y. Shin. Survey of Overlay Multicast Technology. June 2002.
- K.-H. Vik, C. Griwodz, and P. Halvorsen. Constructing low- latency overlay networks: Tree vs. mesh algorithms. In LCN, pages 36–43. IEEE, 2008.
- Y. Liu, Y. Guo, and C. Liang. A survey on peer-to-peer video streaming systems. Peer-to-Peer Networking and Applications, 1(1):18–28, 2008.

A Survey on Robust Tree Overlays

Aspects of Investigation

- Application type
- Performance metrics
- Complementary overlay
- Build and maintenance
- Decentralization level
- Proactiveness vs. Reactivenenes

Application Type

Crucial in most of the self-organization approaches

One-to-many communication model, efficient information dissemination, low communication cost

Application Level Multicast

- G. Tan, S. A. Jarvis, X. Chen, and D. P. Spooner. Performance Analysis and Improvement of Overlay Construction for Peer-to-Peer Live Streaming. Simulation, 82(2):93–106, 2006.
- J. Liu and M. Zhou. Tree-assisted gossiping for overlay video distribution. Multimedia Tools Appl., 29(3):211–232, 2006.

Publish-subscribe, grids, sensor networks

- P. Costa and D. Frey. Publish-Subscribe Tree Maintenance over a DHT. In ICDCSW '05: Proceedings of the Fourth International Workshop on Distributed Event-Based Systems (DEBS) (ICDCSW'05), pages 414–420, Washington, DC, USA, 2005. IEEE Computer Society.
- A. J. Chakravarti, G. Baumgartner, and M. Lauria. The organic grid: self-organizing computation on a peer-to-peer network. IEEE Transactions on Systems, Man, and Cyber- netics, Part A, 35(3):373–384, 2005.
- D. England, B. Veeravalli, and J. B. Weissman. A Robust Spanning Tree Topology for Data Collection and Dissemination in Distributed Environments. IEEE Transactions on Parallel and Distributed Systems, 18(5):608–620, 2007.

H. V. Jagadish, B. C. Ooi, K.-L. Tan, Q. H. Vu, and R. Zhang. Speeding up search in peer-to-peer networks with a multi-way tree structure. In SIGMOD '06: Proceedings of the 2006.
M. Li, W.-c. Lee, and A. Sivasubramaniam.
DPTree: A Bal- anced Tree Based Indexing Framework for Peer-to-Peer Systems. In ICNP '06: Proceedings of the Proceedings of the 2006 IEEE International Conference on Network Protocols, pages 12–21, Washington, DC, USA, 2006. IEEE Computer Society

Performance Metrics

Delay

Bandwidth

Node degree

Uptime

D. England, B. Veeravalli, and J. B. Weissman. A Robust Spanning Tree Topology for Data Collection and Dissemination in Distributed Environments. IEEE Transactions on Parallel and Distributed Systems, 18(5):608–620, 2007.

F. Wang, Y. Xiong, and J. Liu. mTreebone: A hybrid tree/mesh overlay for application-layer live video multicast. In in IEEE ICDCS, page 49, 2007.

S.-W. Tan, G. Waters, and J. Crawford. MeshTree: Reliable Low Delay Degree-bounded Multicast Overlays. Parallel and Distributed Systems, International Conference on, 2:565–569, 2005.

G. Tan, S. A. Jarvis, X. Chen, and D. P. Spooner. Performance Analysis and Improvement of Overlay Construction for Peer-to-Peer Live Streaming. Simulation, 82(2):93–106, 2006.

Complementary Overlay Support

Y. Li and W. T. Ooi. Distributed construction of resource-efficient overlay tree by approximating MST. In ICME, pages 1507–1510, 2004

Extra links #

H. V. Jagadish, B. C. Ooi, K.-L. Tan, Q. H. Vu, and R. Zhang. Speeding up search in peer-to-peer networks with a multi-way tree structure. In SIGMOD '06: Proceedings of the 2006 ACM SIGMOD international conference on Management of data, pages 1–12, New York, NY, USA, 2006. ACM

C. Tang and C. Ward. GoCast: Gossip-Enhanced Overlay Multicast for Fast and Dependable Group Communication. In DSN '05: Proceedings of the 2005 International Confer- ence on Dependable Systems and Networks, pages 140–149, Washington, DC, USA, 2005. IEEE Computer Society.

B. Akbari, H. R. Rabiee, and M. Ghanbari. DPOCS: A Dynamic Proxy Architecture for Video Streaming Based on Overlay Networks. In IEEE MICC & ICON '05, 11 2005.

M. Li, W.-c. Lee, and A. Sivasubramaniam. DPTree: A Balanced Tree Based Indexing Framework for Peer-to-Peer Systems. In ICNP '06: Proceedings of the Proceedings of the 2006 IEEE International Conference on Network Protocols, pages 12–21, Washington, DC, USA, 2006. IEEE Computer Society.

Build and Maintenance

Joins, shifts-up and swaps

- G. Tan, S. A. Jarvis, X. Chen, and D. P. Spooner. Performance Analysis and Improvement of Overlay Construction for Peer-to-Peer Live Streaming. Simulation, 82(2):93–106, 2006.
- B. Akbari, H. R. Rabiee, and M. Ghanbari. DPOCS: A Dynamic Proxy Architecture for Video Streaming Based on Overlay Networks. In IEEE MICC & ICON '05, 11 2005

Eager and lazy push gossiping strategies

J. Leitao, J. Pereira, and L. Rodrigues. Epidemic Broadcast Trees. In SRDS '07: Proceedings of the 26th IEEE Inter- national Symposium on Reliable Distributed Systems, pages 301–310, Washington, DC, USA, 2007. IEEE Computer Society.

Bellman Ford, Prim's algorithm

D. England, B. Veeravalli, and J. B. Weissman. A Robust Spanning Tree Topology for Data Collection and Dissemination in Distributed Environments. IEEE Transactions on Parallel and Distributed Systems, 18(5):608–620, 2007.

Proactive Maintenance, repair strategies

- Z. Fei and M. Yang. A proactive tree recovery mechanism for resilient overlay multicast. IEEE/ACM Trans. Netw., 15(1):173–186, 2007.
- D. Frey and A. L. Murphy. Failure-Tolerant Overlay Trees for Large-Scale Dynamic Networks. In P2P '08: Proceedings of the 2008 Eighth International Conference on Peer- to-Peer Computing, pages 351–361, Washington, DC, USA, 2008. IEEE Computer Society.

Decentralization Level

Most illustrated approaches are distributed Self-organizing tree overlays with autonomous nodes

- Hybrid systems
 - Overlay Control Server (OCS)
 - Multicast Server Node (MSN)
 - Content Server
 - Backbone system
 - Super-nodes

- B. Akbari, H. R. Rabiee, and M. Ghanbari. DPOCS: A Dynamic Proxy Architecture for Video Streaming Based on Overlay Networks. In IEEE MICC & ICON '05, 11 2005.
- S. Banerjee, C. Kommareddy, K. Kar, S. Bhattacharjee, and S. Khuller. Construction of an Efficient Overlay Multicast Infrastructure for Real-time Applications. In INFOCOM, 2003.
- J. Liu and M. Zhou. Tree-assisted gossiping for overlay video distribution. Multimedia Tools Appl., 29(3):211–232, 2006.
- > mTreebone: A hybrid tree/mesh overlay for application-layer live video multicast. In in IEEE ICDCS, page 49, 2007.
- G. An, D. Gui-guang, D. Qiong-hai, and L. Chuang. Bulk- Tree: An overlay network architecture for live media stream- ing. Journal of Zhejiang University, 7(1):125–130, 2006.

Proactiveness vs. Reactiveness

Proactive level 1: Support from an underlying overlay

Y. Li and W. T. Ooi. Distributed construction of resource- efficient overlay tree by approximating MST. In ICME, pages 1507–1510, 2004.

Proactive level 2: Sorting the nodes according to performance metrics

G. Tan, S. A. Jarvis, X. Chen, and D. P. Spooner. Performance Analysis and Improvement of Overlay Construction for Peer-to-Peer Live Streaming. Simulation, 82(2):93–106, 2006.

Proactive 3: Know beforehand the neighbor to connect to in case of failure

Z. Fei and M. Yang. A proactive tree recovery mechanism for resilient overlay multicast. IEEE/ACM Trans. Netw., 15(1): 173–186, 2007.

Reactive level 1: detect failures and reconnect (heartbeats)

J. Liu and M. Zhou. Tree-assisted gossiping for overlay video distribution. Multimedia Tools Appl., 29(3):211–232, 2006.

Reactive level 2: swaps and shifts-up operations during build

B. Akbari, H. R. Rabiee, and M. Ghanbari. DPOCS: A Dynamic Proxy Architecture for Video Streaming Based on Overlay Networks. In IEEE MICC & ICON '05, 11 2005

Reactive level 3: Reactive level 2 in dynamic environments

A. Walters, K. Bauer, and C. Nita-Rotaru. Towards Robust Overlay Networks: Enhancing Adaptivity with Byzantine-Resilience. Technical Report CSD TR 05– 026.

Evangelos Pournaras, June 2009

Discussion and Open Issues

Peer-to-peer tree overlays can enable the effective utilization

of a wide range of application

Robustness is related to the environment and the application type

- Generic tree overlay (service) for different application types?
- Underlying overlays should enhance the effectiveness of trees and not move their vulnerabilities

Bridging and gap and unifying proactiveness and reactiveness

Why do I investigate tree overlays?

Why do I investigate tree overlays? (cont.)

Energy Management

Stabilization of energy consumption

How?

Aggregation and decision-making over a tree overlay

E. Pournaras, M. Warnier, and F. Brazier. A Distributed Agent-based Approach to Stabilization of Global Resource Utilization. In Proceedings of International Conference of Complex Intelligent and Software Intensive Systems (CISIS'09), March 2009

Questions?

