A Survey and a Proposed Approach on Robust Tree Overlays

Evangelos Pournaras

Vrije Universiteit Amsterdam

June 2009
Focus

Proposed Approach: AETOS, the Adaptive Epidemic Tree Overlay Service
Tree Structures

Simple in principal

Aggregation

Search

Information Dissemination

Evangelos Pournaras, June 2009
Tree Overlays and Distributed Systems

Sensitive

Node failures

Congestions

Link failures

Attacks

Heterogeneity

Sensitive

Evangelos Pournaras, June 2009
Central Approaches

- Unscalable and not an option for every type of application
- Disregarded in this survey
General Approach for Reliable Trees

Application Optimization

Self-organization

Fault-tolerance

Maintenance

Evangelos Pournaras, June 2009
Related Surveys

- Focus on one application scenario, e.g. Application Level Multicast
- Classify and examine methods according to the cross-link, in-tree or multiple-tree redundancy
- Tree vs. mesh based systems

A Survey on Robust Tree Overlays

22 recent related papers

Evangelos Pournaras, June 2009
Aspects of Investigation

- Application type
- Performance metrics
- Complementary overlay
- Build and maintenance
- Decentralization level
- Proactiveness vs. Reactiveness
Application Type

Crucial in most of the self-organization approaches

One-to-many communication model, efficient information dissemination, low communication cost

Application Level Multicast

Distributed databases

Publish-subscribe, grids, sensor networks

Evangelos Pournaras, June 2009
Performance Metrics

- Delay
- Bandwidth
- Node degree
- Uptime

Evangelos Pournaras, June 2009
Complementary Overlay Support

- **Mesh**
 - Y. Li and W. T. Ooi. Distributed construction of resource-efficient overlay tree by approximating MST. In ICME, pages 1507–1510, 2004

- **Extra links**

- **Gossiping**

- **DHT**

- **Central Entities**
 - Evangelos Pournaras, June 2009
Build and Maintenance

Joins, shifts-up and swaps

- B. Akbari, H. R. Rabiee, and M. Ghanbari. DPOCS: A Dynamic Proxy Architecture for Video Streaming Based on Overlay Networks. In IEEE MICC & ICON '05, 11 2005

Eager and lazy push gossiping strategies

Bellman Ford, Prim’s algorithm

Proactive Maintenance, repair strategies

Decentralization Level

Most illustrated approaches are distributed
Self-organizing tree overlays with autonomous nodes

- Hybrid systems
 - Overlay Control Server (OCS)
 - Multicast Server Node (MSN)
 - Content Server
 - Backbone system
 - Super-nodes

Evangelos Pournaras, June 2009
Proactiveness vs. Reactiveness

Proactive level 1: Support from an underlying overlay

Proactive level 2: Sorting the nodes according to performance metrics

Proactive 3: Know beforehand the neighbor to connect to in case of failure

Reactive level 1: detect failures and reconnect (heartbeats)

Reactive level 2: swaps and shifts-up operations during build

- B. Akbari, H. R. Rabiee, and M. Ghanbari. DPOCS: A Dynamic Proxy Architecture for Video Streaming Based on Overlay Networks. In IEEE MICC & ICON ’05, 11 2005

Reactive level 3: Reactive level 2 in dynamic environments

Evangelos Pournaras, June 2009
Discussion and Open Issues

- Peer-to-peer tree overlays can enable the effective utilization of a wide range of application types.
- Robustness is related to the environment and the application type.
- Generic tree overlay (service) for different application types?
- Underlying overlays should enhance the effectiveness of trees and not move their vulnerabilities.
- Bridging and gap and unifying proactiveness and reactivity.
Why do I investigate tree overlays?

Evangelos Pournaras, June 2009
Why do I investigate tree overlays? (cont.)

Energy Management

Stabilization of energy consumption

How?

Aggregation and decision-making over a tree overlay

Questions?