
A Survey and a Proposed Approach on Robust Tree Overlays

Evangelos Pournaras
Intelligent Interactive Distributed Systems

VU University, Amsterdam
The Netherlands

E.Pournaras@few.vu.nl

Abstract

Tree overlays benefit a wide range of applications as they
perform effective and efficient data dissemination and ag-
gregation. However, they are sensitive to failures as local
perturbations impact the tree topology globally. Building
and maintaining robust tree overlays in distributed environ-
ments is the challenge that this paper addresses through an
extensive survey of recent approaches.

Inspired by the open issues identified in this survey, this
paper also proposes an alternative approach to robust tree
overlays, the Adaptive Epidemic Tree Overlay Service (AE-
TOS). The architecture and the fundamental concepts of
AETOS are outlined and discussed.

1. Introduction

Hierarchical structures impose effective communication
patterns and support the management of distributed sys-
tems. In an environment with arbitrarily joins, leaves and
failures, such as the Internet, hierarchical topologies are in-
fluenced tremendously. The global consequences of local
failures in hierarchical topologies can lead to service dis-
ruption and underutilization of system resources. This is
also the case with tree overlays as a type of multi-level hi-
erarchical topology that this paper discusses.

The robustness of tree overlays is the focus of this paper.
The contribution of this work is twofold: (i) an extensive
survey on robust, self-organized tree overlays is illustrated
and (ii) a proposed approach is outlined, the Adaptive Epi-
demic Tree Overlay Service (AETOS).

This paper is organized as follows: Section 2 provides an
overview of robust tree overlays and related surveys. Sec-
tion 3 illustrates various robust tree overlays in the context
of six defined aspects of investigation. Section 4 discusses
the main gap of these approaches and the open issues. Sec-
tion 5 illustrates an alternative proposed approach on robust

tree overlays: the AETOS system. Finally, Section 6 con-
cludes this paper.

2. An Overview of Robust Tree Overlays

Trees are a widely used overlay topology in various
applications [25, 29, 17, 11, 6, 9]. The communication
cost of search, broadcast and aggregation over trees is low
and nodes are based on simple parent-child communication
links. In stable environments, or in environments where
there is a central control of the topology, trees can be
built and maintained relatively easy. However, such cen-
tral approaches do not scale and the assumption of a stable
predictable environment does not represent large-scale dis-
tributed systems [9].

Failures in nodes affect their branches underneath result-
ing in the split of the tree in more than one parts. Con-
secutive failures can lead to disruption of the whole struc-
ture. A failure closer to the root has higher impact than the
ones near the leaves. Furthermore, nodes are autonomous
and heterogeneous. They can join and leave a system at
any time. They have different processing and storing capac-
ity, different bandwidth and can also compete between each
other towards satisfying their goals. All these issues affect
the stability of the tree overlay tremendously. In addition,
links exhibit the delay of the underlying infrastructure, thus
messages may experience long delays over the tree overlay.

This paper identifies the lack of a wide-scope investiga-
tion on the self-organization of robust tree overlays. Most
of the related surveys focus on a specific application. For
example, in [5], various methods concerning overlay mul-
ticast are examined and classified according to their cross-
link redundancy, in-tree redundancy or multiple-tree redun-
dancy. In the survey of [19], overlay multicast technologies
are classified according to the node dynamics and the sup-
port of an unstructured or structured overlay. In that sur-
vey, many of the illustrated approaches are based on tree
overlays. Finally, in [32, 21], tree overlays are compared to



mesh-based systems in terms of how they handle the net-
work latency in the overlay.

In contrast, this paper aims to identify the crucial as-
pects of various approaches followed in a range of applica-
tions. It also aims to classify them and reach conclusions on
what properties are required to build and maintain general-
purpose robust tree overlays. In this paper, 22 recent works
on robust tree overlays are discussed and classified. Table 1
in Appendix A outlines the illustrated systems of this sur-
vey.

3. Aspects of Investigation

Despite the broad scope of the approaches on robust tree
overlays, there are some interesting common aspects among
recent research work. The application type motivates most
of the approaches. The self-organization process is driven
by performance metrics that are defined in the context of
each application type. In many cases, the tree overlay is
supported by another complementary overlay network that
provides robustness properties and resilience to failures.
The build and maintenance is the core aspect in most of the
illustrated approaches. Although distributed solutions are
the main focus of this work, the level of decentralization is
examined as well. Finally, an interesting aspect of inves-
tigation is how proactive or reactive the self-organization
process is as it appears that there are different notions of
proactiveness and reactiveness in the illustrated approaches.

3.1. Application Type

The majority of the applications concerns application-
level multicast (ALM) and related video streaming and real-
time applications [30, 3, 20, 29]. This fact does not come
as a surprise as, in theory, trees appear to be a very effective
structure for broadcast. In addition, the restricted spread of
IP multicast, due to technical and economical reasons [8]
has turned the focus to the use of peer-to-peer tree overlays
for multicasting.

Data can be mapped to the nodes of a tree structure for
performing efficient queries. This idea was initially adop-
toted in database systems. Complex queries can be per-
formed over peer-to-peer tree overlays in a fully distributed
manner [12, 17]. Building and maintaining a reliable tree
overlay is crucial for the data consistency and the extraction
of knowledge from a network.

Trees are also useful in publish-subscribe systems [7, 11]
as they can be used to minimize the changes in the events
routing. In grid environments, tasks allocation is per-
formed by using strong mobility software agents that self-
organize nodes in a tree overlay [6]. Finally, robust span-
ning trees appear useful for data collection in sensor net-
works and data dissemination in divisible load schedul-

ing [9], in which performance comes as a a trade-off with
data loss due to node or link failures.

Most of the approaches optimize the self-organization
process according to the requirements of a specific appli-
cation type. Despite the various common concepts among
the approaches, their characteristics vary significantly.

3.2. Performance Metrics

One of the core characteristics identified in most of the
approaches is the fact that the self-organization is based on
or driven by one or more performance metrics. These con-
cern either the underlying infrastructure, the application or
the performance profile of the individual machines. Some
of the most important performance metrics and their influ-
ence on the robustness of the tree overlay are discussed be-
low:

• Delay: A tree overlay can exhibit long delays when
messages are exchanged. For example, if the root of
the tree is connected with its children via long-delay
links, this results in all the nodes underneath expe-
riencing this delay. Related metrics with the delay
are the hops count and eccentricity that are considered
in [9].

• Bandwidth: The bandwidth profile of nodes affect the
performed operations over the tree overlay. In most
cases, high-bandwidth nodes should be placed near
the root. In some approaches [10], bandwidth is re-
lated to the node degree, that is the number of chil-
dren that each node is connected to. In another related
work [34], bandwidth and node degree are considered
independent performance metrics.

• Node degree: The number of children influences the
local state of a node. It can be adjusted according to
the bandwidth or the processing capacity of the node.
Besides the local influence, there is also a global in-
fluence over the tree overlay. Configuring the node de-
gree can lead to a balanced tree (degree-bounded) [30],
a fat (wide) or a long one [9, 29]. This global overlay
topology configuration can potentially affect the per-
formance of the application significantly and it is re-
lated to performance trade-offs [18].

• Uptime: This metric refers to the lifetime connectivity
of a node. It is also related to its availability according
to some studies [29, 27]. In [15], the sojourn proba-
bility is considered as a metric of denoting the avail-
ability of nodes. The join time of nodes is considered
for the optimization of segments transmission in video
streaming[20].

2



Optimizing the tree overlay requires consideration of
various metrics and factors that affect the application. For
example, a bandwidth-ordered tree overlay is a wide one
with many nodes in the top-levels. This may lead to a vi-
olation of the node degrees. Furthermore, a tree that is an
uptime-ordered one is usually longer with fewer connec-
tions in the top levels. In these cases, studies propose the
integration of the performance enhancements. The work
in [29] discusses how such a bandwidth-ordered tree over-
lay version can be combined with a time-ordered one to-
wards increasing the overall performance. This integration
is performed by locally calculating the service capability
contribution (SCC), that is the product of the bandwidth
value and the age of a node. In [9], the path weight and
the hop count are weighted towards achieving an effective
trade-off between data loss, under node and link failures,
and performance. This is how that work deals with the no-
tion of robustness. A similar weighting scheme is proposed
in [18], by considering the relative delay penalty and the
resource usage.

In a similar concept, but following a different approach,
the work in [15] aims to maximize the minimum link relia-
bility in multiple sessions of Internet broadcasting. The idea
of distinct link reliabilities for every session is adopted. The
link reliabilities are measured from the sojourn probabilities
of the two linked nodes for a specific session.

Weighting schemes are also proposed in the neighbor-
ing selection. For example, [31] proposes a scheme with
one random and five proximity links in the overlay view
of nodes to eliminate the effects of node and link failures.
This schemes retains the tree connectivity even after 23%
of node failures. Finally, the work in [33] discusses the Ma-
halanobis distance. This metric calculates the correlation
of different adaptation attributes towards detecting outliers.
The latter is useful in the case of malicious nodes that aim
to perform attraction, repulsion and disruption in the self-
organization process of the tree overlay.

3.3. Complementary Overlay Support

Many of the approaches discussed in this paper introduce
a complementary overlay, individual (central) entities or ad-
ditional overlay links to increase and support the robustness
of the tree overlay.

Mesh overlays are used to support tree overlays in var-
ious approaches that concern multicasting. Meshes pro-
vide higher robustness as there is redundancy in case of
link failures. However, they introduce problems with du-
plicate messages and suffer from the trade-off between effi-
ciency and latency. For this reason, various approaches try
to benefit from both tree and mesh overlays: RESMO [18]
builds and maintains a minimum-delay, minimum-resource
usage spanning tree over a mesh overlay by considering

only links with sufficient bandwidth. Similarly, in [34],
the stable nodes of an underlying mesh overlay are orga-
nized in a backbone tree overlay. Finally, MeshTree [30]
is a mesh overlay that emerges from the insertion of short-
cut links over a tree overlay whose nodes are topologically
close.

The idea of retaining additional, special-purpose links
is adopted in some other cases as well. For example, be-
sides the parent and children links, BATON* [12] also re-
tains: (i) adjacent links that map adjacent range of values
for the support of complex queries and (ii) neighbor links
that point to nodes in the same level of the tree. TAG [20]
and PRM [4] use gossip and random links respectively in
order to deal with data loss and discontinuous playback in
real-time applications. GoCast [31] also uses and combines
a random and a proximity-based gossiping protocol to in-
crease resilience.

Structured peer-to-peer overlays can also support tree-
based ones. In [7], a case with a DHT is illustrated that
benefits from controlling the number of neighbors.

Some other approaches introduce central entities to man-
age the tree overlay. For example, DPOCS [1] proposes a
dynamic proxy architecture containing an overlay control
server (OCS) that manages the topology of the tree over-
lay and distributes video streams from the source. Simi-
larly, OMNI [3] introduces multicast server nodes (MSNs)
for managing multiple mutlicasting groups. BulkTree [2]
groups and manages nodes in clusters. Each of them rep-
resents a super-node in the tree overlay. The tree becomes
more scalable and robust but there is an additional overhead
to maintain the super-nodes.

Finally, this survey identifies two special interesting
cases: (i) DPTree [17] is a peer-to-peer overlay that is aware
of the tree structure but fully decoupled from it. This is
achieved by building a skip graph and matching the naming
scheme of peers among the skip graph and the tree overlay.
(ii) The approach in [14] proposes the exploitation of the
underlying Internet Indirection Infrastructure (i3) [28] for
reliable data delivery in the upper tree overlay.

3.4. Build and Maintenance

In the investigated approaches illustrated in this paper,
the building process of tree overlays is either integrated with
their maintenance, for example in [16], or it serves as a
bootstrapping mechanism for the maintenance that follows,
e.g. [3].

The main method that is used for building a tree, or an
initial version of it, is the consecutive joins to candidate par-
ents and children [30] or to the leaves of the tree [29]. These
candidates are derived randomly [15] or from their prox-
imity to the local node [20]. The proximity is defined by
performance metrics related to the ones discussed in Sec-

3



tion 3.2.
After the initial joins, nodes either aim to improve their

position in the tree or they cooperate to optimize the tree
topology. In the first case, nodes perform shift-up opera-
tions [29] by moving to an upper level in the tree, whereas,
in the second case, a parent and one of its children swap
their positions [1, 12].

Plumtree [16] combines eager and lazy push gossiping
strategies to build and maintain a tree overlay. The node-
key mapping of the underlying DHT in [7] is used to form
the tree overlay. Alternative methods for the distributed
building of a tree overlay include the top-down approach
proposed in [18], the Bellman Ford [9] and Prim’s [10] al-
gorithm.

The maintenance of tree overlays, either proactive or re-
active, is based on various strategies of reconnections. Usu-
ally, nodes monitor the connectivity of their neighbors by
sending heartbeats [20, 17]. In case of a failure, they try to
connect with another node. TreeOpt [23] improves the tree
connectivity by performing two types of children moves as
an evolutionary optimization of the tree overlay. In [11],
a candidate parent is selected by applying and combining
different repair strategies related to the application require-
ments. Similarly in [6], ancestor lists are retained in case
of failures. In contrast, the proposed approach in [10] de-
fines a parent-to-be for every node (besides the root) before
a failure occurs. Thus the repair is faster.

Other techniques propose link redundancy in order to
satisfy alternative connectivity in case of failures [12, 34].
Load-balancing also supports the maintenance of tree over-
lays by aiming to retain the load in the nodes between root
and leaves equal [17, 12].

3.5. Decentralization Level

This survey focuses on distributed approaches, thus in
most of them nodes are based on local and partial knowl-
edge of their environment. They autonomously connect
with or disconnect from other nodes. They are also able
to react to the perturbations of the environment [16, 6, 33].
From this viewpoint, the global system is self-organized.

However, some of the illustrated systems are hybrid.
DPOCS [1] is based on the overlay control server (OCS)
that assists nodes to join the multicast groups. OMNI [3]
and TAG [20] follow a similar concept by introducing the
multicast server nodes (MSNs) and a content server respec-
tively. mTreebone [34] utilizes only stable nodes for video
multicasting. BulkTree [2] groups the nodes to super-nodes
in order to increase the stability of the tree. Finally, the
approach of [15] is based on a video broadcasting source
node that centrally collects and calculates statistics based
on which the self-organization process performs.

3.6. Proactiveness vs. Reactiveness

Defining the level of proactiveness and reactiveness is
hard. Most of the approaches are based on operations that
incorporate both notions.

The cases that introduce an underlying complementary
robust overlay [30, 34, 31, 16] are a form of proactive ap-
proach towards the robustness in the upper tree overlay.
Link and data redundancy [12, 20, 4, 17] is also a proac-
tive approach for the resilience of the tree to failures. The
same also holds in case of an ordered tree based on a ro-
bustness metric [29]. In [10], a more conceptually proactive
approach is proposed. Nodes calculate the new parents for
their children before a failure occurs and without violating
the node degrees.

In contrast, reactive nodes monitor their neighbors [17]
and perform reconnections to other nodes when a failure oc-
curs. Usually the selection of the nodes is based on various
strategies [11] that balance performance trade-offs similarly
to the ones discussed in Section 3.2.

Proactive approaches benefit from the fact that they aim
to decrease the complexity and time of the repair actions
or the impact of failures. However, proactive approaches
introduce: (i) a usually constant but (ii) significant commu-
nication and processing cost. How comparable this cost is
with the one of reactive approaches is something that must
be considered in systems that choose one approach over the
other.

4. Discussion and Open Issues

The main gap that this survey identifies in almost all of
the illustrated approaches is the lack of a generic mecha-
nism that could optimize a tree overlay for any type of ap-
plication. The illustrated approaches do not manage to keep
the self-organization process independent of the application
requirements. However, there are plenty of interesting char-
acteristics on them that could be used towards this effort.

Performance metrics provide the notion of robustness for
different types of applications. In cases where more than
one opposing metrics should be used, weighting schemes
such as the ones proposed in [9, 18] appear to be effective
to deal with the performance trade-offs. This paper pro-
poses two alternative approaches for the future research di-
rections: (i) the input of a singe performance metric to the
self-organization mechanism. This single metric may rep-
resent a set of different application requirements. It should
be a result of a utility function calculated in the application
level and not in the level of the tree self-organization. (ii)
the support of multiple criteria in the self-organization pro-
cess. Howerer, it is not clear how this approach could be
realized effectively without increasing the complexity.

4



Unstructured overlays have a higher robustness than
trees. Integrating or setting up two overlays to work to-
gether and cooperate can enhance the robustness of the tree
considerably. However, quantifying the gain, in matters of
robustness, and the losses, in matters of complexity, is hard
and it is something that future research must shed light on.

In most of the approaches illustrated, effort was put on
maintaining the tree overlay rather than building it. Swaps,
and shifts-up operations appear effective to optimize and
organize the tree even under the effect of churns. However,
more effort is required to clarify how fast these methods
perform in large-scale distributed environments especially
when catastrophic failures occur. In the latter case, a quan-
titative indication of the resilience in failures should be pro-
vided, such as the one presented in [31].

A high decentralization level is hard to be achieved in
some certain cases. For example, when a tree is built
and used by the application, the termination of the self-
organization process may be required. Nodes have only
local control. ”Freezing” the tree overlay for providing con-
sistency to the application can be performed relatively easy
in central points. However, distributed local control is still
a challenge and open issue, especially for enabling the ap-
plication to use and improve a tree overlay on-demand.

Ordering the tree according to performance metrics can
improve the proactive resilience of trees to failures and their
impact. Furthermore, highly proactive approaches, such as
the one in [10], can enable the system to react fast to pertur-
bations, thus they should be adopted and investigated fur-
ther in future work. Finally, self-organized trees can exhibit
the same vulnerability of peer-to-peer systems to various
types of attacks [33, 24], thus security is an open issue as
well.

5. An Alternative Approach: AETOS

Inspired by some of the open issues and the lack of a
generic mechanism for robust tree overlays, this paper pro-
poses AETOS, the Adaptive Epidemic Tree Overlay Service.
AETOS builds and updates a tree overlay on-demand. It is
based on a single metric based on which nodes are sorted
in the tree overlay. It is supported by two gossiping pro-
tocols that provide high robustness and connectivity. The
building and maintenance process is realized by four types
of exchanged messages. It is a highly distributed system
with both proactive and reactive components.

This section provides a brief overview of AETOS. For a
detailed illustration readers are referred to the complemen-
tary works in [26].

5.1. Architecture Overview

AETOS is based on a 3-layer architecture illustrated in
Figue 1. It is placed between the application and the under-
lying network infrastructure.

Figure 1. The 3-layer architecture of AETOS.

The bottom layer of AETOS is consisted of the Peer
Sampling Service [22]. This is a gossiping protocol that
maintains highly connected robust random graphs. This
choice is made to introduce the robustness properties of ran-
dom graphs in AETOS and increase the connectivity of the
nodes that participate.

On top of it, ARMOS lies, this is A Rank-based Mid-
dleware Overlay Service. ARMOS is a proposed variation
of the T-MAN gossiping protocol. In contrast to T-MAN
that uses a static ranking function, ARMOS builds various
topologies based on dynamic proximity criteria. The moti-
vation for the use of ARMOS in AETOS is the clustering
of nodes according to a robustness metric. This serves the
sorting process of the tree overlay. Section 5.2 illustrates
how nodes use dynamic proximity criteria.

Finally, the top-lays is the Adaptive Tree Overlay Man-
agement (ATOM). ATOM is responsible for the configura-
tion of the parent-child connections. It receives connectiv-
ity options from ARMOS and also provides feedback to it.
Section 5.3 illustrates the role of the ATOM layer.

5.2. Myopic View Reconfiguration

ARMOS is based on the myopic view. The myopic view
consists of the sorted sets of candidate parents and chil-
dren. The sorting is performed according to the value of
robustness for every node that belongs to these sets. Fig-
ure 2 illustrates this concept. From the set of robustness
values, the local node chooses the more robust nodes for its

5



potential neighbors. The two bold curved arrows in Figure 2
depict the neighboring selections.

Figure 2. The formation of the myopic view
and the default neighboring selections.

Nodes perform reconfigurations in their myopic view in
order to make it dynamic and provide more flexibility in the
proximity criteria. The concept of a reconfiguration is the
exclusion or inclusion of areas from or to the myopic view.
In other words, the range of robustness values is shifted
right or left. The number of nodes in the myopic view can
vary but without violating the maximum length of it. This
enables nodes to find their best neighbors despite their local
view of the environment and despite changes in the values
of robustness.

More information about the defined reconfiguration of
the myopic view are illustrated in [26].

5.3. Adaptive Tree Overlay Management

In the top ATOM layer, the neighboring connections are
configured by using 4 exchanged messages: the request, re-
jection, acknowledgment and removal messages. After an
interaction, nodes reconfigure their myopic view for either:
(i) find a neighbor to connect to if the tree neighboring list is
not filled or (ii) improve their position in the tree by chang-
ing tree neighbors.

A detailed illustration of the ATOM functionality is il-
lustrated in [26].

5.4. On-demand Building and Maintenance

In contrast to the existing approaches that this paper il-
lustrates, AETOS provides full local control of the boot-
strapping and termination of the self-organization process
to the application. Every application client calls the local
AETOS service through the local AETOS proxy. The call is

a request for a new tree overlay or the improve of an existing
one. The application is also the one that parametrizes the
self-organization process by giving as input: (i) the num-
ber of children c that can be supported, (ii) the value of the
local robustness metric, (iii) QoS parameters such as how
long AETOS should spend trying to optimize the tree over-
lay. Figure 3 depicts the proposed model.

Figure 3. The AETOS proxy and the interac-
tion between the application and AETOS.

The termination is similar to the one proposed for T-
MAN [13]. However, the local node participates again in
the self-organization process if and only if the application
requests an improvement of the tree overlay. Otherwise the
parent-children connections remain locked.

5.5. An Example of Self-Organization

Calculations were performed in a small-scale environ-
ment to investigate the convergence of AETOS. The calcu-
lations provide a first indication of the AETOS behavior.

Nodes, 10 in total, are placed in a binary tree (c = 2 for
every node). The nodes receive random values in the range
(0,100). These values express the robustness. Every node
retains a random view of 3 other ones, a myopic view with
2 candidate parents and 4 candidate children (its maximum
length is equal to 6) and its tree neighboring list, that is the
parent and its children.

AETOS runs in discrete rounds. In every round: (i) the
peer sampling service protocol updates the random view,
(ii) ARMOS updates the myopic view by applying the ap-
propriate view reconfigurations as well, and (iii) one parent
and two children requests are sent.

After every round, the connectivity of the tree is evalu-
ated and the ordering of the nodes over the tree as well. The

6



calculations reveal that there is already a fully connected
tree at the end of the 1st round. As myopic view reconfigu-
rations are performed, the nodes tend to find the appropriate
neighbors. Finally, the system converges to the required tree
topology on the 5th round.

Figure 4. The number of exchanged mes-
sages for each layer of the AETOS architec-
ture.

The number of generated messages per round has been
calculated as an illustration of the AETOS communication
overhead. Figure 4 depicts the number of messages for each
layer of the architecture. The graph reveals that, in this
example, the system converges. The number of generated
messages from the ATOM and ARMOS layers decreases
gradually as the myopic views are reconfigured and nodes
end with their final best parent and children. In contrast,
the Peer Sampling Service has a constant communication
cost as it functions independently from the other two upper
layers.

Although definite conclusions cannot be reached by this
small-scale experiment, they do provide a positive indica-
tion and motivation to further perform large-scale simula-
tions in future work.

6. Conclusions

This survey paper illustrates and covers the recent work
of the self-organization in robust tree overlays. The pro-
posed approaches are discussed from the viewpoint of 6 as-
pects: application type, performance metrics, complemen-
tary overlay support, build and maintenance, decentraliza-
tion level and proactiveness versus reactiveness. The main
gap identified is the lack of a generic mechanism for robust
tree overlays that can satisfy different types of applications.
Complementary overlays can increase the robustness if they
are used effectively. Finally, dynamic systems should be

both proactive and reactive to the unpredictable failures of
distributed environments.

This papers also proposes AETOS, the Adaptive Epi-
demic Tree Overlay Service. AETOS comes as an effort
towards bridging the main gap that this paper identifies. It
is a generic, both proactive and reactive, fully decentralized
self-organization mechanism that is based on two gossiping
protocols. Further extensive experimental work will pro-
vide more insights of the AETOS effectiveness.

Acknowledgments

This project is supported by the NLnet Foundation
http://www.nlnet.nl.

References

[1] B. Akbari, H. R. Rabiee, and M. Ghanbari. DPOCS: A
Dynamic Proxy Architecture for Video Streaming Based on
Overlay Networks. In IEEE MICC & ICON ’05, 11 2005.

[2] G. An, D. Gui-guang, D. Qiong-hai, and L. Chuang. Bulk-
Tree: An overlay network architecture for live media stream-
ing. Journal of Zhejiang University, 7(1):125–130, 2006.

[3] S. Banerjee, C. Kommareddy, K. Kar, S. Bhattacharjee, and
S. Khuller. Construction of an Efficient Overlay Multicast
Infrastructure for Real-time Applications. In INFOCOM,
2003.

[4] S. Banerjee, S. Lee, B. Bhattacharjee, and A. Srinivasan.
Resilient multicast using overlays. IEEE/ACM Trans. Netw.,
14(2):237–248, 2006.

[5] S. Birrer and F. E. Bustamante. A Comparison of Resilient
Overlay Multicast Approaches. IEEE Journal on Selected
Areas in Communications, 25(9):1695–1705, 2007.

[6] A. J. Chakravarti, G. Baumgartner, and M. Lauria. The or-
ganic grid: self-organizing computation on a peer-to-peer
network. IEEE Transactions on Systems, Man, and Cyber-
netics, Part A, 35(3):373–384, 2005.

[7] P. Costa and D. Frey. Publish-Subscribe Tree Maintenance
over a DHT. In ICDCSW ’05: Proceedings of the Fourth In-
ternational Workshop on Distributed Event-Based Systems
(DEBS) (ICDCSW’05), pages 414–420, Washington, DC,
USA, 2005. IEEE Computer Society.

[8] C. Diot, B. N. Levine, B. Lyles, H. Kassem, and D. Balen-
siefen. Deployment issues for the IP multicast service and
architecture. Network, IEEE, 14(1):78–88, 2000.

[9] D. England, B. Veeravalli, and J. B. Weissman. A Robust
Spanning Tree Topology for Data Collection and Dissemi-
nation in Distributed Environments. IEEE Transactions on
Parallel and Distributed Systems, 18(5):608–620, 2007.

[10] Z. Fei and M. Yang. A proactive tree recovery mechanism
for resilient overlay multicast. IEEE/ACM Trans. Netw.,
15(1):173–186, 2007.

[11] D. Frey and A. L. Murphy. Failure-Tolerant Overlay Trees
for Large-Scale Dynamic Networks. In P2P ’08: Proceed-
ings of the 2008 Eighth International Conference on Peer-
to-Peer Computing, pages 351–361, Washington, DC, USA,
2008. IEEE Computer Society.

7



[12] H. V. Jagadish, B. C. Ooi, K.-L. Tan, Q. H. Vu, and
R. Zhang. Speeding up search in peer-to-peer networks with
a multi-way tree structure. In SIGMOD ’06: Proceedings of
the 2006 ACM SIGMOD international conference on Man-
agement of data, pages 1–12, New York, NY, USA, 2006.
ACM.

[13] M. Jelasity, A. Montresor, and O. Babaoglu. T-Man: Gossip-
based Fast Overlay Topology Construction. Elsevier Com-
puter Networks, 2009. To appear.

[14] K. Lakshminarayanan, A. Rao, I. Stoica, and S. Shenker.
End-host controlled multicast routing. Comput. Netw.,
50(6):807–825, 2006.

[15] C. Y. Lee and H. Dong Kim. Reliable overlay multicast
trees for private Internet broadcasting with multiple ses-
sions. Comput. Oper. Res., 34(9):2849–2864, 2007.

[16] J. Leitao, J. Pereira, and L. Rodrigues. Epidemic Broadcast
Trees. In SRDS ’07: Proceedings of the 26th IEEE Inter-
national Symposium on Reliable Distributed Systems, pages
301–310, Washington, DC, USA, 2007. IEEE Computer So-
ciety.

[17] M. Li, W.-c. Lee, and A. Sivasubramaniam. DPTree: A Bal-
anced Tree Based Indexing Framework for Peer-to-Peer Sys-
tems. In ICNP ’06: Proceedings of the Proceedings of the
2006 IEEE International Conference on Network Protocols,
pages 12–21, Washington, DC, USA, 2006. IEEE Computer
Society.

[18] Y. Li and W. T. Ooi. Distributed construction of resource-
efficient overlay tree by approximating MST. In ICME,
pages 1507–1510, 2004.

[19] Z. Li and Y. Shin. Survey of Overlay Multicast Technology.
June 2002.

[20] J. Liu and M. Zhou. Tree-assisted gossiping for overlay
video distribution. Multimedia Tools Appl., 29(3):211–232,
2006.

[21] Y. Liu, Y. Guo, and C. Liang. A survey on peer-to-peer
video streaming systems. Peer-to-Peer Networking and Ap-
plications, 1(1):18–28, 2008.

[22] Márk Jelasity and Spyros Voulgaris and Rachid Guerraoui
and Anne-Marie Kermarrec and Maarten van Steen. Gossip-
based peer sampling. ACM Trans. Comput. Syst., 25(3):8,
2007.

[23] P. Merz and S. Wolf. TreeOpt: Self-Organizing, Evolv-
ing P2P Overlay Topologies Based On Spanning Trees. In
SAKS’07, Bern, Switzerland, 2007.

[24] J.-D. Mol, D. H. J. Epema, and H. J. Sips. The Orchard
Algorithm: Building Multicast Trees for P2P Video Multi-
casting Without Free-Riding. IEEE Transactions on Multi-
media, 9(8):1593–1604, 2007.

[25] E. Pournaras, M. Warnier, and F. Brazier. A Distributed
Agent-based Approach to Stabilization of Global Resource
Utilization. In Proceedings of International Conference of
Complex Intelligent and Software Intensive Systems (CI-
SIS’09), March 2009. (to appear).

[26] E. Pournaras, M. Warnier, and F. M. T. Brazier. Adap-
tive Agent-based Self-organization for Robust Hierarchi-
cal Topologies. In ICAIS ’09: Proceedings of the Inter-
national Conference on Adaptive and Intelligent Systems.
IEEE, September 2009. (to appear).

[27] S. Sen and J. Wang. Analyzing peer-to-peer traffic across
large networks, booktitle = IMW ’02: Proceedings of the
2nd ACM SIGCOMM Workshop on Internet measurment.
pages 137–150, New York, NY, USA, 2002. ACM.

[28] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana.
Internet indirection infrastructure. In SIGCOMM, pages 73–
86, 2002.

[29] G. Tan, S. A. Jarvis, X. Chen, and D. P. Spooner. Perfor-
mance Analysis and Improvement of Overlay Construction
for Peer-to-Peer Live Streaming. Simulation, 82(2):93–106,
2006.

[30] S.-W. Tan, G. Waters, and J. Crawford. MeshTree: Reli-
able Low Delay Degree-bounded Multicast Overlays. Par-
allel and Distributed Systems, International Conference on,
2:565–569, 2005.

[31] C. Tang and C. Ward. GoCast: Gossip-Enhanced Overlay
Multicast for Fast and Dependable Group Communication.
In DSN ’05: Proceedings of the 2005 International Confer-
ence on Dependable Systems and Networks, pages 140–149,
Washington, DC, USA, 2005. IEEE Computer Society.

[32] K.-H. Vik, C. Griwodz, and P. Halvorsen. Constructing low-
latency overlay networks: Tree vs. mesh algorithms. In
LCN, pages 36–43. IEEE, 2008.

[33] A. Walters, K. Bauer, and C. Nita-Rotaru. Towards Robust
Overlay Networks: Enhancing Adaptivity with Byzantine-
Resilience. Technical Report CSD TR 05–026.

[34] F. Wang, Y. Xiong, and J. Liu. mTreebone: A hybrid
tree/mesh overlay for application-layer live video multicast.
In in IEEE ICDCS, page 49, 2007.

Appendix

A. Outline of the Survey

Table 1 outlines the self-organized tree overlays that are
illustrated in this paper. Note that the AETOS system is
also included in the table for comparison with the illustrated
systems.

8



Table 1. Outline of the self-organized robust tree overlays illustrated in this paper.

System Application Performance Metrics Complementary Overlay Build & Maintenance Decentralization Pro/Re-active
[9] Sensor net-

works, load
scheduling

hop count, path weight No Bellman Ford Central and dis-
tributed

proactive

RESMO [18] ALM delay, resource usage mesh top-down, reconnections distributed reactive
DPOCS [1] video

streaming
delay, bandwidth, node
degree

Overlay Control Server (OCS) joins, swaps, reconnections hybrid reactive

MeshTree [30] ALM delay, node degree backbone, delivery and mesh
links

joins, rewiring distributed reactive

OMNI [3] multicasting
and real-
time appli-
cations

delay, node degree Multicast Server Nodes
(MSNs)

central sorting, swaps, pro-
motions

hybrid reactive

BATON* [12] multi-
attribute
queries

data adjacent and neighbor links joins, swaps, load-balancing distributed both

mTreebone
[16]

video multi-
casting

delay, bandwidth, node
degree

mesh joins, link redundancy hybrid reactive

TAG [20] real-time
asyn-
chronous
streaming

time indexing, delay,
bandwidth

gossiping links joins, heartbeats, reconnec-
tions

hybrid both

[29] live stream-
ing

uptime, bandwidth No joins, shifts-up distributed both

BulkTree [2] live media
streaming

delay super-nodes joins and leaves manage-
ment

hybrid reactive

[15] Internet
broadcast-
ing with
multiple
sessions

delay, link capacity, node
degree, node sojourn
probabilities

No random tree, link swaps
(Tabu search), reconnec-
tions

hybrid reactive

[33] ALM latency, bandwidth No detection, response, recov-
ery, local temporal and spa-
tial data correlation

distributed reactive

[10] ALM latency, node degree No Prim algorithm, proactive
parent-to-be calculation

distributed proactive

[11] publish-
subscribe

node degree No reconnection strategies distributed reactive

[7] publish-
subscribe

node degree, node keys DHT node-key mapping, joins
and leaves management

distributed reactive

PRM [4] ALM latency, losses random links randomized forwarding, re-
transmissions, loss correla-
tions, Ephemeral Guaran-
teed Forwarding (EGF)

distributed both

TreeOpt [23] ALM delay epidemic protocol two types of local children
moves

distributed reactive

Organic
Grid [6]

grid load
scheduling

delay, bandwidth, node
degree

strong mobility software
agents

friend-of-friend joins, re-
connections (ancestor lists),
prefetching

distributed both

Plumtree [16] broadcast No peer sampling (HyParView) eager and lazy puch gossip-
ing

distributed both

GoCast [31] ALM delay, node degree random and proximity-based
gossiping

insertions, removals and re-
placements of random and
proximity neighbors

distributed both

DPTree [17] complex
queries of
multidi-
mensional
data

No skip graph decoupled from the
tree overlay

assignment of tree branches
to nodes, heartbeats, load-
balancing and navigation for
data insertion and removal

distributed both

[14] ALM latency, node degree Internet Indirection Infrastruc-
ture [28]

joins and refresh messages distributed reactive

AETOS [26] generic generic Peer Sampling Service [22], T-
MAN [13]

candidate neighbors from
the myopic view exchange
request, rejection, acknowl-
edgment and removal mes-
sages

distributed both

9


