A Distributed Agent-based Approach to Stabilization of Global Resource Utilization

Evangelos Pournaras, Martijn Warnier and Frances M. T. Brazier

Autonomic Systems, Systems Engineering Section

Motivation

From local resource utilization to global resource stabilization

Challenge..!

Motivation (cont.)

Resource allocation problem?

Resource Allocation Problem

Energy plans generated and executed by thermostatic devices

Resource Allocation Problem

The **selection process** from a set of locally generated **possible plans**

Resource Allocation Problem

How to achieve **global stabilization** in energy utilization

Self-stabilization

Minimum Deviations

Keeping the oscillations to the minimum continuously

Reversing Deviations

Balance a sudden unavoidable peak in the system in a next period

Problem Overview

Distributed - flow resource - coordination problem!

Research Question

How can the local plan selections result in a global stabilized plan?

Central Coordination

> Gustavo Dudamel: A very young and talented conductor

Central Coordination (cont.)

> Although so young and talented he can end **overloaded**!

Central Coordination (cont.)

Complexity = # of possible plans # of devices

Central Coordination (cont.)

Guarantees the optimum stabilization but unscalable!

Distributed Coordination

Algorithm Overview

Simulations

3280 agents

3 different types of thermostatic devices

3 children per agent

7 levels in a balanced tree

5 possible plans per agent

Investigation of minimizing deviations and reversing deviations

Comparison with the **random plan selection** (greedy agents)

Minimizing Deviations

Aggregation 1 Aggregation 2 Aggregation 3

63% Avg. Decrease in Oscillations

Reversing Deviations

Conclusions

> Distributed hierarchical coordination for self-stabilization

Software agents with local knowledge and local tasks

2 fitness functions for adaptive decision making: minimizing and reversing oscillations

Improvement in keeping oscillations minimum and reversing oscillations

Future Work

Self-stabilization

simulations

from single to multiple machines, live deployment

applications

power management of data IBM data centers

robustness

application-independent self-organization service

Questions?

