EPOS: Energy Plan Overlay Summation

Using intelligent agents for self-adaptation and self-optimization of energy consumption in power networks

Evangelos PournarasMartijn Warnier
Frances Brazier

Problem and Goal

The Problem in Autonomic Computing

Problem Environment

EPOS Concept

Self-optimization of energy utilization through the **self-adaptation** in the selection of energy plans

Autonomic Computing

Agents & Autonomic Computing

EPOS Outline

Points	Choice
Goal	Global stabilization in energy consumption
Environment	TCA agents that generate energy plans
Infrastructure	Tree structure
Operation	Decentralized energy plan aggregation

Tuple 1

Ste

Requesting Agent

Agent's list of possible plans for this round

2. Branch-cumulative old plan

Branch-cumulative new plan

Aggregator Agent

Replies with the plan chosen for each requester agent

Aggregator

- Matchmaking and selection of the best plans for each requester
- ➤ How?
 - 1. Plan pre-processing and convergence
 - 2. Adaptive Global Aggregation Plan Operation (AGAPO)
 - 3. Stabilization calculation

1. Plan Pre-Processing & Convergence

- Candidate plans
 - Calculation of all unique plan combinations for this aggregation round
- Leaves-to-branch-to-tree convergence:
 - Cumulative plan summation from leaves to branches and finally to the root
 - Convergence to the new global stabilized plan

2. AGAPO Operator

- AGAPO->Adaptive Global Aggregation Plan Operator
- Core of self-adaptivity
- Local-to-global stabilization
 - Adapts the candidate plans to an evolved new global plan

Old Knowledge

Global AGAPO Plan = (Old Global Plan) - (Old Branch Cumulative Plan)

+ (New Branch Cumulative Plan) + (Candidate Plan)

New Knowledge

3. Matchmaking & Plan Selection

- Comparison of AGAPO plans
- Stabilization 2 methods for calculation:
 - Standard deviation

$$sd = \sqrt{rac{1}{|s_{ ext{agapo}}|-1} \sum_{t \in s_{ ext{agapo}}} (s_{ ext{agapo}}[t] - ar{s}_{ ext{agapo}}})^2$$

Area-based

$$a = \sum_{t \in s_{ ext{agapo}}} |ar{s}_{ ext{agapo}} - s_{ ext{agapo}}[t]|$$

- The minimum AGAPO plan value is the selected one
- Extraction of candidate plan -> Extraction of selected plans
- > Aggregators respond to requesters the selected plans

EPOS Algorithm – Step 0

Branch-Cumulative Old Summation

Branch-Cumulative New Summation

Pre-existing knowledge (old plans)

EPOS Algorithm – Step 1

TCA Agents

Aggregation Points

Branch-Cumulative Old Summation

Branch-Cumulative New Summation

- 4 branchesaggregation points
- Low branches height
- Old knowledge influence decreases

EPOS Algorithm - Step 2

TCA Agents

Aggregation Points

Branch-Cumulative Old Summation

Branch-Cumulative New Summation

- 2 branchesaggregation points
- Increased branches height
- Influence of old knowledge decreases more

EPOS Algorithm – Step 3

Summation

- 1 branchaggregation point
- High branch height
- Old knowledge influence decreases even more

EPOS Algorithm – Step 4

TCA Agents

Aggregation Points

Branch-Cumulative New Summation

- Convergence to tree - global plan in the root
- Adaptation based fully on the new knowledge

Experimental Environment

- Binary tree with 7 agents (3 levels)
- 2 generated plans/agent/aggregation round (normalized in [0,1]
 - 10 energy values
 - Random seed/average value
 - +/- 0,2 deviation
- > 10 aggregation rounds
- Knowledge of previous round
- 2 methods examining energy stabilization
 - Standard deviation
 - Area-based
- Comparison with random plan selection

Results

> 15% improvement

$$(t=1.20, df=18, p \ge 0.13)$$

Conclusions & future work

- > EPOS: Energy Plan Overlay Summation
 - Self-optimization and self-adaptation mechanism in line with the properties of autonomic computing
 - Cumulative plan summations, hierarchy, memory
 - Indications for an effective energy load-balancing mechanism

- Self-organization of tree structure (build & maintenance)
- Exploring the level of knowledge needed for effective adaptation
- Large-scale experiments
- Autonomic computing framework for distributed energy management

Questions?

