Towards Adaptive Energy Plan Aggregation over a Peer-to-Peer Tree Overlay

Evangelos Pournaras, Martijn Warnier, Frances Brazier Intelligent Interactive Distributed Systems VU University Amsterdam

Elth Ogston
Department of Computer Science
University of Warwick

AGENDA

- > Stabilization problem of global energy consumption
- Peer-to-peer tree overlay for aggregation
- Adaptive energy plan aggregation properties
- > EPOS: Energy Plan Overlay Summation

Problem and Goal

- Energy demands heterogeneity
 - Different machines
 - Different user consumptions
 - Different operational environment
- Oscillations in global energy consumption
- Central aggregators do not scale
- High economical cost (managing supply stations)
- Global stabilization of energy consumption
 - Focus on consumers
 - Minimization of energy oscillations
 - Focus on Thermostatically Controlled Appliances (TCAs)

Approach

- Agents represent TCAs
- Agents generate potential energy plans (functions) to execute
 - Energy values in time intervals
- Energy plans coordination
- Selected plans
 - Contribute in the stabilization of global energy consumption

Aggregation over a tree overlay

- Tree aggregation:
 - Low communication cost, sensitive to failures
- Robust tree overlays:
 - Reliability-driven construction and maintenance
 - Robust nodes are moved up in the tree
 - Lower failure rates in TCAs
- Build and Maintenance:
 - Autonomously by the TCA agents
 - Higher level entities (feeders, substations)

Decentralized aggregation

Aggregation rounds (leaves->root->leaves)

> Aggregation steps (level transitions)

Information exchangedvarious plans:

- Supported
- Cumulative
- Old
- New
- Global

•

Applying the concept

EPOS: Energy Plan Overlay Summation

Self-optimization and self-adaptation

- > Goal: global stabilization of energy consumption
- Environment: TCA agents that generate energy plans
- > Infrastructure: A peer-to-peer tree overlay
- Operation: Energy plans aggregation (fully decentralized)
- 1. Dual peer role
- 2. Plan-driven overlay formation
- 3. Overlay memory -> knowledge of previous aggregation rounds
- 4. Local-to-global stabilization
- 5. Node-to-branch-to-tree convergence

Emerging properties

Self-optimization of energy utilization through the self-adaptation in the selection of energy plans

TCA Agents

Aggregation Points

Branch-Cumulative Old Summation

Branch-Cumulative New Summation

Pre-existing knowledge (old plans)

TCA Agents

Aggregation Points

Branch-Cumulative New Summation

- 4 branchesaggregation points
- Low branches height
- Old knowledge influence decreases

TCA Agents

Aggregation Points

Branch-Cumulative Old Summation

Branch-Cumulative New Summation

- 2 branchesaggregation points
- Increased branches height
- Influence of old knowledge decreases more

- 1 branchaggregation point
- High branch height
- Old knowledge influence decreases even more

TCA Agents

Aggregation Points

Branch-Cumulative Old Summation

Branch-Cumulative New Summation

- Convergence to tree - global plan in the root
- Adaptation based fully on the new knowledge

Experimental Environment

- Binary tree with 7 peers (3 levels)
- 2 generated plans/agent/aggregation round (normalized in [0,1]
 - 10 energy values
 - Random seed/average value
 - +/- 0,2 deviation
- > 10 aggregation rounds
- Knowledge of previous round
- 2 methods examining energy stabilization
 - Standard deviation
 - Area-based
- Comparison with random plan selection

Results

> 15% improvement

$$(t=1.20, df=18, p \ge 0.13)$$

Conclusions & future work

- Multidimensionality of decentralized complex energy plans aggregation
- > EPOS: Energy Plan Overlay Summation
 - Cumulative plan summations, hierarchy, memory
 - Indications for an effective energy load-balancing mechanism
- > Self-organization of tree overlay (build & maintenance)
- Exploring the level of knowledge needed for effective adaptation
- Large-scale experiments

Questions?

