
Enhanced Reconfigurable Gnutella (ERG):

Dynamic Performance Improvement of Gnutella

Networks

Evangelos Pournaras

Submitted for the Degree of

Master of Science

from the

University of Surrey

Department of Computing

Faculty of Engineering and Physical Sciences

University of Surrey

Guildford, Surrey, GU2 7XH, UK

August 2007

Supervised by: Dr Nick Antonopoulos

Evangelos Pournaras 2007

Enhanced Reconfigurable Gnutella (ERG): Dynamic Performance Improvement of Gnutella Networks

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 ii

You told me once and you were crying…

“Don’t change where you are going…”

Finally, I have changed! But you smile…

Thank you for everything you have done for me!

Enhanced Reconfigurable Gnutella (ERG): Dynamic Performance Improvement of Gnutella Networks

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 iii

ACKNOWLEDGMENTS

I would like to thank my supervisor Dr Nick Antonopoulos, who trusted me, believed in me

and my abilities and he gave me the opportunity to work on this project, something that was

challenge for me both in research and application level. I would also like to thank him for

making me believe in P2P networks and their capabilities as one of the ultimate research

challenge in computing nowadays. I could specially mention the benefits I received by his

high education, technical knowledge and motivation for completing this work. His methods,

collaboration, availability and advices helped significantly towards the success of this work.

I would also like to thank Mr George Exarchakos, for his invaluable advices and his patience

to come to the morning meetings with our supervisor and share his ideas with us. He also

motivated me to work on P2P networks and inspired me many times, even with simple words;

crazy ideas cross my mind and solve problems with them.

Last but not least, I would like to thank my family for their passion to support me and make

me smile. I owe them everything!

Enhanced Reconfigurable Gnutella (ERG): Dynamic Performance Improvement of Gnutella Networks

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 iv

ABSTRACT

P2P networks have gained a considerable research interest in the last years. Resource

discovery and heterogeneity of the overlay P2P networks cause overloading problems and

especially in unstructured networks which use flooding as the searching technique. The

purpose of this work is the development of a load balancing model, which shares capacity

between overloaded and underloaded nodes in a Gnutella network. The load which this work

focuses on is the query load. The idea is based on some logical movements of the nodes that

cause the overloading to nodes that are underutilized. These movements are supported by

special peers called virtual servers. Except the background provided on unstructured P2P

networks with emphasis on Gnutella networks, autonomic computing and self-organised

systems are also discussed. This work describes in detail the proposed models and the

simulation environment for testing the various metrics of the network. Some of them include

the number of discarded messaged, system availability, query success, traffic caused by load

balancing, load profiles of nodes in the network, standard deviation of query rate in nodes and

more. Simulation results show a great performance improvement, with the model increases

query success, reduces discarded messages, increases the balanced nodes and all these with

exponentially reduced cost in load balancing traffic. Furthermore, system behaviour has

characteristics of self-organisation and analysis, is illustrated in this issue. Lastly, the work

concludes with some future ideas and extension on the proposed model.

Enhanced Reconfigurable Gnutella (ERG): Dynamic Performance Improvement of Gnutella Networks

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 v

ABBREVIATIONS

P2P Peer-to-Peer

ERG Enhanced Reconfigurable Gnutella

QoS Quality of Service

DHT Distributed Hash Tables

MD5 Message Digest Algorithm 5

TTL Time to Live

VSS Virtual Server Supervised

VSD Virtual Server Driven

RFH Request For Help

RTUL Request To UnderLoaded

RTOL Response To OverLoaded

UAA Unregister And Assign

CTOL Confirm To OverLoaded

JDSL Java Data Structure Language

GUI Graphical User Interface

CPU Central Processor Unit

DoS Denial of Service

API Application Programming Interface

UIP User Interface and Parameterization

EP ERG Protocol

SE Simulator Engine

PN P2P Network

Enhanced Reconfigurable Gnutella (ERG): Dynamic Performance Improvement of Gnutella Networks

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 vi

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... III

ABSTRACT.. IV

ABBREVIATIONS..V

TABLE OF CONTENTS .. VI

LIST OF FIGURES .. VIII

LIST OF TABLES ... IX

INTRODUCTION ..10

1. LITERATURE REVIEW ..12

1.1 PEER-TO-PEER SYSTEMS AND CHALLENGES..13
1.2 UNSTRUCTURED PEER-TO-PEER SYSTEMS...14

1.2.1 Graph Theory for P2P Networks..14

1.2.2 Gnutella 0.4..16

1.2.3 Gnutella 0.6..18

1.3 LOAD BALANCING IN P2P NETWORKS ..19
1.4 AUTONOMIC P2P COMPUTING – SELF-ORGANISATION ...22

1.4.1 Defining autonomic computing – elements and characteristics ...23

1.4.2 The challenges in Autonomic Computing...26

1.4.3 Self-Organisation and Associations in Peer-to-Peer Networks..27

2. MODEL DESCRIPTION...34

2.1 THE PURPOSE AND FOCUS OF LOAD BALANCING SCHEME ...35
2.2 LOAD BALANCING MODEL ...36

2.2.1 The concept ..36

2.2.2 The Role of Virtual Servers ..38

2.2.3 Virtual Server Supervised Model..39

2.2.4 Virtual Server Driven Model ..44

2.2.5 Where load balancing may fail - Extreme Conditions..48

2.2.6 Virtual Server Supervised versus Virtual Server Driven ..49

2.5 MESSAGES ..49
2.6 EVALUATION AND METRICS ...51

3. MODEL SIMULATION ..54

3.1 SUPPORTED FUNCTIONS ..55
3.2 CHOICE OF TECHNOLOGIES ...56
3.3 DESIGN AND ARCHITECTURE ..58
3.4 IMPLEMENTATION AND GRAPHICAL USER INTERFACE ..62
3.5 EVALUATION OF THE ERG SIMULATOR ..64

4. RESULTS AND DISCUSSION ...66

4.1 EXPERIMENTAL ENVIRONMENT ..66
4.2 LOAD PROFILES OF NODES IN THE NETWORK ...69
4.3 STANDARD DEVIATION OF QUERY SUCCESS IN NODES ...71
4.4 TRAFFIC OF LOAD BALANCING ...72
4.5 SYSTEM AVAILABILITY ...73
4.6 WORKLOAD OF VIRTUAL SERVERS AND OVERLOADED NODES IN THE TWO MODELS...................73

Enhanced Reconfigurable Gnutella (ERG): Dynamic Performance Improvement of Gnutella Networks

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 vii

4.7 QUERY SUCCESS ...75
4.8 DISCARDED MESSAGES ...76

5. CONCLUSIONS AND FUTURE WORK ..78

5.1 CONCLUSIONS AND EVALUATION TOWARDS AUTONOMIC P2P COMPUTING.................................78
5.2 FUTURE WORK..80

5.2.1 More Advanced and Heterogeneous Simulations...81

5.2.2 Detailed Study and Dynamic Utilization of the Load Balancing Variations........................81

5.2.3 Build of a more Advanced and Generic Simulator...81

5.2.4 Study and Development of the Role of Virtual Servers...82

5.2.5 Development of a Prototype for Real Testing and Evaluation ...82

REFERENCES..83

Enhanced Reconfigurable Gnutella (ERG): Dynamic Performance Improvement of Gnutella Networks

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 viii

LIST OF FIGURES

FIGURE 1: OVERLOADED AND UNDERLOADED NODES IN A GNUTELLA NETWORK...................................36
FIGURE 2: LOGICAL MOVEMENT OF A NODE AND LOAD BALANCING..37
FIGURE 3: LOAD BALANCING IN VSS VARIATION ..40
FIGURE 4: FORWARDING OF THE REQUEST FOR HELP IN ANOTHER VIRTUAL SERVER IN VSS VARIATION.41
FIGURE 5: LOAD BALANCING IN VSD VARIATION..45
FIGURE 6: FORWARDING OF THE REQUEST FOR HELP IN ANOTHER VIRTUAL SERVER IN VSD VARIATION46
FIGURE 7: LAYER ARCHITECTURE OF ERG SIMULATOR..59
FIGURE 8: UML CLASS DIAGRAM OF ERG SIMULATOR..61

FIGURE 9: GUI OF ERG SIMULATOR ...64
FIGURE 10: THE MAIN SIMULATION ENVIRONMENT WITH THE PARAMETERS ...66
FIGURE 11: THE SECOND SIMULATION ENVIRONMENT WITH THE PARAMETERS68
FIGURE 12: LOAD PROFILES OF NODES FOR PURE GNUTELLA...69
FIGURE 13: LOAD PROFILES OF NODES IN VSS LOAD BALANCING MODEL ...70
FIGURE 14: LOAD PROFILES OF NODES IN VSD LOAD BALANCING MODEL...70
FIGURE 15: STANDARD DEVIATION OF QUERY SUCCESS IN NODES OF THE NETWORK...............................71
FIGURE 16: EXTRA TRAFFIC INTRODUCED BY LOAD BALANCING ...72
FIGURE 17: SYSTEM AVAILABILITY IN PURE GNUTELLA AND IN LOAD BALANCING VERSIONS.................73
FIGURE 18: WORKLOAD OF VIRTUAL SERVERS AND OVERLOADED NODES IN THE TWO LOAD BALANCING

MODELS..75
FIGURE 19: QUERY SUCCESS FOR THE TWO VARIATIONS AND PURE GNUTELLA.......................................76
FIGURE 20: DISCARDED MESSAGES IN PURE GNUTELLA AND IN THE TWO LOAD BALANCING MODELS77

Enhanced Reconfigurable Gnutella (ERG): Dynamic Performance Improvement of Gnutella Networks

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 ix

LIST OF TABLES

TABLE 1: DESCRIPTOR HEADER...17
TABLE 2: PING MESSAGE. A SIMPLE DESCRIPTOR HEADER. ..17
TABLE 3: PONG MESSAGE ...17
TABLE 4: PUSH MESSAGE ..18
TABLE 5: QUERY MESSAGE ...18
TABLE 6: QUERY HIT MESSAGE ..18
TABLE 7: ROUTE TABLE UPDATE (VARIANT 00×) ..19

TABLE 8: ROUTE TABLE UPDATE (VARIANT 10×)...19
TABLE 9: MESSAGES IN VSS VARIATION ...41
TABLE 10: MESSAGES IN VSD VARIATION ..45
TABLE 11: UNDERLOADED NOTIFICATION (ULN) ..50
TABLE 12: REQUEST FOR HELP (VSS_RFH) ...50
TABLE 13: RESPONSE TO OVERLOADED (VSS_RTOL) ..50
TABLE 14: REQUEST TO UNDERLOADED (VSS_RTUL)..50

TABLE 15: CONFIRMATION TO OVERLOADED (VSS_CTOL) ..50
TABLE 16: UNREGISTER AND ASSIGN (VSS_UAA) ..50
TABLE 17: REQUEST FOR HELP (VSD_RFH) ..51
TABLE 18: REQUEST TO UNDERLOADED (VSD_RTUL) ...51
TABLE 19: UNREGISTER AND ASSIGN (VSD_UAA) ...51
TABLE 20: RESPONSE TO OVERLOADED (VSD_RTOL)..51
TABLE 21: SELF-ORGANISATION PROFILE OF PURE GNUTELLA AND GNUTELLA WITH LOAD BALANCING

...79

Introduction

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 10

INTRODUCTION

For most people, P2P systems correspond to file-sharing networking environments. The truth

is that P2P systems are one of the most multidimensional topics, both in research and

applications. The facts for P2P future are very promising but there are existing problems that

must be solved. The problems vary, depending on the type of P2P network. Unstructured and

structured schemes can have different performance and trade-off issues.

This work studies load balancing issues in unstructured P2P networks and specifically in

Gnutella (see Gnutella 0.4 and 0.6 specifications). Gnutella network is a fully decentralized

system, which, however, suffers from scalability problems and high bandwidth consumption

due to flooding. One of the major problems and challenges in Gnutella network is the high

number of queries generated and transferred. It is believed that they may cause problems to

some nodes to respond to these queries or forward them further. This has a negative effect in

query success and in the overall performance of the network. Furthermore, an unstructured

distributed system like Gnutella lacks resources control. The network may have unexploited

resources and there is not any mechanism to take advantage of the network dynamics.

The above problems do not appear only to Gnutella. However, studies reveal these problems

being more intense in Gnutella network. In general, the solution to such problems and in such

systems, is the realization of smart mechanisms, which provide a potential functionality to

manage their resources, their configuration and their protection. Such systems appear

adaptivity under different conditions and are able to be self-organised. The whole effort is

towards autonomic computing, which defines self-managed systems.

The purpose of this work is the development of such a smart, dynamic and adaptive

mechanism to solve load balancing issues in Gnutella networks. The study focuses on

Gnutella 0.4. The proposed model tries to support overloading nodes from queries by

establishing a “logical movement” of the nodes that cause the overloading to another node

that is regarded underloaded. For achieving these actions, the virtual server role is attributed

to nodes with high performance profile to support the load balancing model.

This work is outlined in five parts. Part 1 provides some background knowledge of P2P

networks and focuses on unstructured P2P and Gnutella. It also introduces the idea of

autonomic computing and self-organised systems and associates the concepts with P2P

Introduction

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 11

computing. Part 2 describes the two proposed models and two variations for further

investigation. Part 3 describes the developed simulator, its architecture, the technologies used

and implementation issues. Part 4 outlines the results and discusses the findings of the

simulations. This work concludes with Part 5, which illustrates the conclusions and discusses

ideas for further work.

Literature Review

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 12

1. LITERATURE REVIEW

P2P systems have gained considerable research interest in the last few years. They incorporate

the distributed concept in communication and self-organisation. Although the idea of P2P

systems is not new, they have been utilized within the last few years because of some specific

technological improvements. Nowadays over 50% and sometimes over 70% of Internet traffic

is attributed to P2P systems according to Lu, Cao, Cohen, Li, and Shenker (2000). This fact

shows the tendency of increased requirements in bandwidth.

What was regarded a P2P system in the past is quite different form what we consider

nowadays. According to Steinmentz and Wehrle (2004), a P2P system is a self-organizing

system of equal, autonomous entities (peers) which aim for the shared usage of distributed

resources in a networked environment avoiding central services.

In a P2P network each node is treated equally and the communication is established directly

without any intermediate centralized machine. Three main requirements of the future Internet-

based applications can be identified:

• Scalability.

• Security and reliability.

• Flexibility and QoS.

Researchers focus on providing to P2P systems the above attributes which will offer more

complete solutions and make P2P computing the dominant networking scheme in a wide

range of applications.

The next subsections outline the P2P systems and challenges by focusing on unstructured

schemes. It will also be illustrated here some background knowledge on graph theory and

description will focus on Gnutella networks which are the foundation of the developed load

balancing system.

Literature Review

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 13

1.1 Peer-to-peer Systems and Challenges

One common approach on the development of a new technology is the need it will serve. In

P2P systems we have a wide range of needs (applications), with different and sometimes

contradictive properties. The fundamental need is the realization of a decentralized self-

organised system for achieving high level of QoS without the need of centralized services.

There are two approaches which have been introduced:

• Unstructured P2P Systems.

These systems were the first P2P schemes. There is not a standard structure in the

connections between the nodes. The first unstructured networks (and their applications

like Napster - see Napster web site) were based on hybrid models. In these systems, users

looked up to a central point - server and the last responded with the location of the

resources. Although data transfer is direct, resource discovery is highly dependent on

these servers, which have the common disadvantages of client - server model.

Other approaches have managed to offer complete distributed networks with other

disadvantages which concern memory, processing power and bandwidth consumption

(Gnutella with flooding, Ritter (2001), Zeinalipou (2002)).

Despite their still existent problems, unstructured P2P systems remain a useful scheme for

further improvements and development of distributed models.

• Structured P2P Systems.

Structured P2P systems are based on Distributed Hash Tables (DHTs), which offer

scalability, reliability and fault tolerance. DHTs provide content-addressable data storage

and look up of a resource has)(logNO time complexity. A characteristic analysis is

provided by Balakrishman, Kaashoek, Krger, Morris and Stoica (2003). Upon when the

network forms the hash tables, it can grow arbitrarily without impact on efficiency.

Sometimes the whole effort is towards retaining the hash table consistence and upon

satisfaction of this condition; a significant improvement can be noticed compared to the

unstructured systems.

Literature Review

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 14

Some structured systems include Pastry, described in Rowstron and Druschel (2001), CAN,

described in Ratnasamy, Francis, Handley, Karp and Shenker (2001), and Chord, described in

Stoica, Morris, Karger, Kaashoek and Balakrishnan (2001).

P2P systems are nowadays able to provide various solutions and there are several

applications, which most of them concern file sharing. However, systems require establishing

intelligent and more efficient mechanisms. One fundamental topic is the optimization and

interconnection, in an efficient way, of the overlay and the underlying layers. Projects like

Eichhorn (2006), put some effort towards the solution of this problem. Furthermore, P2P

networks need more sophisticated searching techniques, which will be able to provide

scalability and success in resource discovery. Another aspect is the load balancing. Almost all

of the P2P networks deal with overloading issues in many operations, (storing or processing

information). Mobile and wireless computing and establishment of P2P scheme seems an

interesting idea but modifications are needed and adaptivity to the characteristics of these

networks and their applications. Networks also require smarter behaviour. This introduces the

property of autonomy, self-organisation and self-management, towards autonomic computing

as it has been envisioned by IBM (2001), Kephart and Chess (2003).

1.2 Unstructured Peer-to-peer Systems

Unstructured P2P networks are an interesting and challenging networking scheme. There are

still problems which have not been solved and many obstacles must be overcome.

Before the idea of the model proposed is introduced, some background knowledge on graph

theory and Gnutella networks is important for understanding the definition of the problem and

the proposed solution described in the next section.

1.2.1 Graph Theory for P2P Networks

The fundamental concept of P2P networks is the graph (see Fan and Chung (1997)), in which

nodes are connected directionally or bidirectionally. There are two famous network models

which can correspond to unstructured P2P Networks:

Literature Review

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 15

• Small-World model, see Watts and Strogatz (1998).

• Scale free networks, see Barabasi and Albert (1999).

If we consider again the nature of P2P networks and the conditions which form them, they

have common characteristics with social networks. A social network is inherently self-

organised but it does not follow a certain structure. Such a network remains structurally stable

and is evolved, despite the fact that people come and leave, live and die. Furthermore, there

are not a constant number of participants. This stability and evolution are characteristics

described by small-world effect and scale free degree distribution properties, which also

correspond to the two above network models. We can describe the network mathematically as

below:

• },...,3,2,1{ nV = is a set of n nodes.

•)(υN is the set of neighbours of node υ .

•),(EVG = , where G is the graph (overlay network) and E is the set of edges .

•),(jie = with j being the neighbour of i (target and source nodes respectively).

• m , the number of edges.

•)(GA is the adjacency matrix with dimensions nn× .

•)()(υυ Nko = in the number of neighbours the node υ has.

• []∑ ⊂
⊂=

Vi Nk
ω

ωυυ)()(is the number of neighbour sets in which υ is an element

(indegree).

•)(υk is the sum of indegree and outdegree.

Literature Review

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 16

•),(jiP is the path from node i to node j as a subset EP ⊆ of edges },...,,{ 21 keee

where),(),,(111 jeie kk −== υυ and ∀),(:1 1 lekl ll −=<< υ . The path length is

defined as the number of edges in),(jiP .

•),(jid is the shortest path between nodes i and j .

•),(max)(
),(

jidGD
VVji ×∈

= is the diameter of a graph G (the maximum distance

between any two nodes in the graph).

•
)1(

),(
)(

),(

−⋅
=
∑ ×∈

nn

jid
GD

VVji

avg is the average path length of a graph G .

The simplest structure, which the entire above network properties can describe, is the random

graph, described in the work of Aiello, Chung, and Lu (2000). If the objective is a degree of

control in the diameter of the graph and a clustered structure, then small-world model can be

introduced. This model defines the clustering coefficient which can provide more structured

networks (chordal rings). Lastly, scale-free networks show a property of self-organisation and

follow statistical regularities.

1.2.2 Gnutella 0.4

Gnutella 0.4, (see Gnutella 0.4 specification) is a fully decentralized network which consists

of a large number of nodes connected arbitrarily. The node degree distribution is described as:

1
4.1

)(
,

0

70,
)(

−−













=

<<⋅
= ∑

d c

dp
c

ddc
dp (1.1)

The degree d can range from one to seven with average 2.2=d and 63.1)var(=d . A node

can enter Gnutella network by establishing an average of 3 TCP-connections to other active

Gnutella nodes, whose IP addresses can be received from a bootstrap server. Messages in

Gnutella are transmitted in plain text. Uniqueness is satisfied through MD5 hash keys, defined

in Rivest (1992). Flooding is used as the searching technique, in which messages are sent to

Literature Review

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 17

all neighbours except to the one from which it was received. The procedure is recursive until

a Time-to-Live (TTL) value which is, by default, seven. If a node has already received a

message, it is not forwarded further.

Gnutella messages have a common descriptor header which describes information important

for every message transmitted in the overlay network. Descriptor header has the following

structure:

Table 1: Descriptor Header

Descriptor

ID

Payload

Descriptor
TTL Hops

Payload

Length

Payload n

Bytes

Payload descriptor defines the following Gnutella messages:

• Ping (000×): is used for nodes discovery.

• Pong (010×): is the response to a Ping message.

• Push (400×): is used for downloading from firewalled nodes.

• Query (800×): is the message initiating the search information from the generating

node.

• Query Hit (810×): contains information about the discovered resources.

The respective fields of the above messages are illustrated below:

Table 2: Ping message. A simple descriptor header.

Descriptor

ID

Payload

Descriptor
TTL Hops

Payload

Length

Payload n

Bytes

Table 3: Pong Message

Literature Review

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 18

Descriptor

Header
Port IP Address

Number of

Shared Files

Number of

Kilobytes

Shared

Table 4: Push Message

Descriptor

Header

Servent

Identifier
File Index IP Address Port

Table 5: Query Message

Descriptor Header Minimum Speed Search Criteria

Table 6: Query Hit Message

Descriptor

Header

Number of

Hits
Port IP Address Speed Result Set Node ID

1.2.3 Gnutella 0.6

Gnutella 0.6 (see Gnutella 0.6 specification) is a hybrid model which creates a hub-based

network by introducing another dynamic hierarchical layer. In this way, reduction of

bandwidth consumption is achieved through the hierarchies of superpeers and leafnodes, their

importance is outlined in Singla and Rohrs (2002). Each superpeer should not have registered

more than 50-100 leafnodes depending on the processing power and the network connections.

The number of superpeers increases according to the number of leafnodes. The node degree

distribution in this network is:





















=

=⋅

=−⋅

≤<⋅

=
−−

−

∑
14.1

4.1

)(
,

0

20,05.0

1,05.01

71,

)(
d c

dp
c

dc

dc

ddc

dp (1.2)

Literature Review

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 19

The average degree is 8.2=d and 55.3)var(=d . Although the messages follow the

specification of Gnutella 0.4 network, superpeers must keep track of the content of leafnodes.

They use these tracks to announce later any potential contents which leafnodes may request.

The information can be sent in two ways. The first sends all the table information to

superpeer, whereas the second sends small chunks (maximum 255), subset of the whole table.

Figures 7 and 8 illustrate the two messages:

Table 7: Route Table Update (variant 00×)

Variant Table Length Infinity

Table 8: Route Table Update (variant 10×)

Variant
Sequence

Number

Sequence

Size
Compressor Entry Bits Data

Variant field specifies if the message resets or updates. Infinity field was intended to clear the

route-table if it was broadcasted in the network. Sequence number and sequence size specify

the chunk characteristics and compressor states the compression scheme for the route table

(00× for no algorithm and 10× for ZLIB algorithm).

1.3 Load Balancing in P2P Networks

In client-server model, the server was the one which should manage the high workload caused

by the clients. Usually, servers are machines with high capabilities that can serve a high

number of clients without problems. In practice this is infeasible. Even in the case when the

machine is capable of handling the workload, the cost is extremely high. Mainframes cost

millions of dollars and even in this case there must be guaranteed solutions in cases of single

point of failures and overloading. The solution to these problems is the introduction of more

highly capable machines which will be able to support cases of emergence. This increases the

cost even more and also introduces maintenance and management issues.

On the other hand, P2P models do not suffer from single point of failures but there are

overloading issues. Although these problems may not lead to complete unavailability of

services, usually they reduce performance of systems and exploitation of resources. Solutions

Literature Review

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 20

of overloading nodes in P2P world can not be faced in the same way as in client-server model.

The load must be distributed equally as all peers are equal in a P2P network. Equally means

distribution according to the capabilities of nodes. This is one of the most serious challenges

in P2P systems. Many of them suffer from extra load and developing algorithms and models

for balancing the load is a research topic of extreme importance.

In addition, workload is a multidimensional concept in P2P systems. It may concern anything,

varying from simple messages, storage, CPU cycles, connections, memory caching,

bandwidth and many more. The degree of adaptivity and tolerance depends on the application

and the type of network. A solution which can associate the causes and handle all of them as a

holistic solution seems the ultimate challenge.

There are various problems that have been solved partially with solutions having advantages

and disadvantages. Research has been focused mostly on structured P2P networks. In Karger,

and Ruhl (2006), the problem of uneven partitioning of the address space and items in DHTs

is addressed. According to the authors, some machines may receive more keys during

mapping by a factor of)(lognO the average. Furthermore, even if the address space is

evenly distributed the uneven distribution of keys may cause overloading. The algorithms are

based on the idea of virtual nodes which form a real node. Then distribution of keys is based

on the Markovian properties and the algorithm achieves)(lognO degree per real node,

)log(log nO look up hops and constant factor load balancing. As far as item balancing is

concerned, the algorithm is based on movements of underloaded nodes to portion of address

space occupied by large number of items.

In another work for structured P2P networks, see Godfrey, Lakshminarayanan, Surana, Karp

and Stoica, (2006), the address space problem with invariable number of nodes inserting and

leaving the network and also the number of stored items are solved in a slightly different way.

This work introduces the idea of virtual servers which are responsible for storing data and

tracking routing information. The virtual servers are moved from overloaded to underloaded

nodes. The algorithm is based on two conflicting goals. The minimization of load imbalance

and the minimization of load moved. The goals can be achieved by applying two operations.

The first remaps objects to different points in ID space and the second changes the regions

that are associated with a node. The authors prove that the latter is the recommended because

items can be queried by IDs and each ID can be produced by hashing the content. The

algorithm is able not only to act on request but also to predict potential overloading. It also

predicts changes in load and the effects affect multiple resources because actions are based on

Literature Review

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 21

a load vector. Lastly, the authors support that replication is not a good solution because it

introduces overhead, immutable data and complex algorithms in order they support the

maintenance of data consistency. Similar technique for load balancing is described in Zhu and

Hu (2005).

A completely different load balancing scheme is proposed in Bienkowski, Korzeniowski and

Heide (2005). The idea is based on balancing the length of intervals in which a node can enter

or leave the network. In Aberer, Datta and Hauswirth (2005), attention is focused on two

conflicting load balancing issues, concerning storage and replication. In the proposed

algorithms peers dynamically change their associated key space (bin adaptation) decoupled

from their unique and stable identifier. The routing between peers is based on the associated

key space rather than on the peer identifier. The algorithm also splits key space in partitions

and assigns peers in multiple partitions.

More complete solutions in load balancing are proposed in Exarchakos, Salter and

Antonopoulos (2006). G-ROME protocol aims to balance multiple independent DHT-based

P2P networks for transferring capacity from underutilized nodes to overutilized. The protocol

is based on ROME protocol which balances ring-based P2P topologies for reducing the

number of failed queries. The communication among multiple independent P2P networks is

achieved by creating a Gnutella-like interconnection.

Although most research focus on structured networks, there are several approaches for

unstructured. The issue seems more complicated because such networks have unpredictable

behaviour. In Suri, Toth and Zhou (2004), the load balancing focuses on downloading and

replication of data for downloading from multiple resources. A peer that shares its resources

looks for optimization to avoid high bandwidth consumption. The uncoordinated load

balancing scheme imitates the interactions among self-interested agents which are modeled as

a game. In this scheme each node has its own objective and the outcomes are described by

Nash equilibria, Papadimitriou (2001). This direction introduces in the models a price of

anarchy which is described by the worst case ratio between a Nash outcome and the social

optimum. The greedy algorithm is also described which is based on the myopic strategy. In

practice this means that a peer will select the server with the lower latency.

Load balancing can also be inspired by other fields and be supported mathematically through

various disciplines. In Uchida, Ohnishi, Ichikawa, Tsuru and Oie (2006), a dynamic storage

load balancing technique is described inspired from physics and specifically thermal

diffusion.

Literature Review

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 22

The above, related to load balancing works, reveal the diversity of approaches and different

strategies and objectives towards different types of load balancing. More research is needed

which will bridge the gaps between the different conflicting objectives.

1.4 Autonomic P2P Computing – Self-Organisation

The evolution of computing shows a constant effort of making and offering faster and more

powerful infrastructures. Nowadays, such an approach in modern computing systems is not

enough and can not provide and support the services in order to satisfy users’ needs. P2P

computing can not be integrated to an advanced networking paradigm if it lacks some specific

characteristics. Systems like this need smart mechanisms, adaptivity, and self-management.

Computing is multidimensional, including different technologies, different devices, and a

wide range of services. The increasing number of interactions and relationships between all

the concepts mentioned raises management issues. There is a whole exponentially increasing

complexity, and it must be reduced and handled automatically. Management must be part of

the systems and support a variety of other services.

The effort is towards autonomic computing in which design and implementation of computer

systems, software, storage, and support must be characterised, from user perspective, by

flexibility, accessibility and transparency.

According to IBM (2001), there are short and long term benefits from the realization of

autonomic computing. They are outlined below:

• Short-term technical benefits:

o Simplified user experience through a more responsive real-time systems.

o Cost-savings – scale to use.

o Scaled power, storage and costs that optimize usage across both hardware and

software.

o Utilization of underused processing power.

Literature Review

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 23

o Better descriptive queries languages which will be more natural and accurate.

o Seamless access to multiple file types. Store data from various resources on-

the-fly based on re-formatting and open standards.

o Self-healing which will provide stability, high availability, and security with

fewer errors.

• Long-term business benefits:

o Enablement by shifting available resources to higher-order business.

o Autonomic capabilities and autonomic federated systems.

o End-to-end service level management.

o Distributed computing will allow higher level of collaboration and complex

problems solving.

o Massive and time consuming simulations.

1.4.1 Defining autonomic computing – elements and characteristics

There is not a unified and concrete definition of autonomic computing as it has not been

realised yet. Most definitions are based on descriptions. One very simple descriptive

definition according to webopedia (2007) is the following:

”Autonomic computing is a type of computing model in which the system is self-healing, self-

confugured, self-protected and self-managed.”

The important concept of an autonomic system is the “self-actions” which the definition

mentions. Although many other properties have been introduced, for example self-

anticipation, self-adjustment, self-criticality, self-government and so forth, as it is mentioned

Literature Review

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 24

in Sterritt and Hinchey (2005), some explanations of the main four and a contrast with the

current systems is illustrated below following the thoughts of Kephart and Chess (2003):

• Self-configuration: Configuring, installing or integrating systems which provide and

incorporate a large amount of data, is a time-consuming and challenging task for

system administrators. Most of them must solve problems of incompatible systems

between different platforms and of different vendors. In an autonomic system,

configuration works automatically and follows high-level policies which fulfill

business objectives.

• Self-optimization: There are nowadays numerous software systems that need

complicated configuration in order they are optimized. These systems are more

difficult to be managed when they interact with other similarly complicated software

systems. Autonomic systems could support their own functionality in order they

improve their operation and be benefited in performance or cost.

• Self-healing: Computing systems nowadays incorporate an extremely high cost for

maintenance and error correction. Developers spend a lot of effort and time trying to

fix problems, restoring data and maintaining the consistency of systems. This fact

comes at a high price for businesses. Taking advantage from self-configuration

mechanisms, systems can monitor their state, predict dangerous operations and find

fast and reliable solutions for failures.

• Self-protection: Most systems, although they incorporate functions for self-

protection, these are mostly managed by the user who must decide how he will

protect his system. Autonomic systems would be able to protect themselves against

large-scale correlated problems and cascading failures as a whole and also take

actions for avoidance.

There are eight elements and characteristics that describe and outline the autonomic

computing paradigm according to IBM (2001). These elements come with examples in a P2P

autonomic system:

• The system must be self-aware of its components and its attributes. This means that

autonomic systems must keep the status of its state and the components it interacts,

and set any limitations and potential extensions. In a P2P system this could mean

Literature Review

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 25

every node to be aware of the load capacity it can handle, how the limitations have

been set and which the shared or isolated resources are.

• An autonomic computing system must be reconfigurable under a varying and

unpredictable environment. Any configurations must occur automatically and also the

properties of the configurations must be produced automatically. In a P2P network,

trade-offs between network resource consumption and searching resource success

should be handled under reconfigurable mechanisms which would consider the

heterogeneity of the network and the users’ demands.

• An autonomic system should monitor its state and always find ways to optimize its

functions. In a P2P network nodes may keep statistics about the searching success of

the path that they choose to forward the searching messages. Each time the optimum

path must be selected.

• Such systems must find ways to recover and be adapted to situations of failures or

extraordinary events. Under such extreme conditions the system must find alternative

solutions and reconfigure its elements. In a P2P system, nodes are not always

connected. In cases of failures, the nodes must find alternative resources and always

under transparency to the user.

• An autonomic system will exist in unreliable and unstable networking environments.

Security, integrity and robustness should be satisfied and maintained through self-

protection techniques. P2P systems face many security challenges. Lack of

centralised entities creates a more unstable security context and the challenge is to

satisfy the requirements over distributed mechanisms.

• The system must be adaptive. This requires knowledge of the environment, its

activity and the parameters that can influence the different outputs. Furthermore,

advanced interactions must be applied between the neighbouring entities and between

different systems and sub-systems. Load balancing in P2P networks is an adaptive

property because it allows the system to work more efficiently and exploit

underutilized resources or, act towards supporting overloaded areas.

• Although an autonomic system is a self-managed and independent system, it must be

able to interact with different systems, support open standards and be oriented to

Literature Review

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 26

interoperability. This means that proprietary solutions are difficult to realise

autonomic computing. In P2P world, proprietary systems are oriented to one specific

application and most of them can not work and interact with other systems.

Furthermore the systems are close to the public and these restrictions can not form an

autonomic P2P system.

• An autonomic system should be adaptable and optimized and at the same time

fulfilling the business and user requirements. This goal should be achieved by hiding

the details to the user and providing a transparent autonomic functionality. The whole

effort is to reduce the complexity of the system. In a P2P system, users may request

different QoS. These services should be allowed by the business policies and the

whole system configuration should be provided to the user transparently.

1.4.2 The challenges in Autonomic Computing

The vision of autonomic computing is not the solution of a single problem but rather a change

of view and philosophy to computing. The difficulties come from the interdisciplinary

scientific collaborations and business environments which must support the whole idea.

Autonomic computing is based on the idea of holistic approach, in which there are not the

improvements on single machines that will benefit and bring greater advantages to users but

rather the adaptation of open standards and new technologies which will allow systems to

interact more effectively and be able to fulfill business policies. These systems must be able

to protect themselves, recover from failures and be reconfigurable by always having the

minimum dependence on traditional I/T support. This idea forms a system with different

conceptual foundations:

• The transition from dependence on computational power to dependence to data.

• The change of estimating computing performance from CPU speed to immediacy of

response.

• The importance of dispersed computing attributes will become more important than

individual computers.

Literature Review

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 27

• The business part of computing concerning the usage reflection will be attributed to

the term e-sourcing.

If there is a view from individual systems perspective, then these are systems with:

• Scalable storage and processing power which must be able to serve the needs of both

individual and multiple autonomic systems.

• Transparent routing and formatted data over variable devices.

• Chips with better memory management and utilization.

• Monitoring functionality which will offer a high degree of security and decision-

making.

• Smarter and more robust microprocessors.

The concept of autonomic computing is wide. P2P networks seem an interesting paradigm to

study the formation of autonomic computing. Solving the various problems in P2P systems

requires the form of well defined structures. P2P networks must have a high degree of self-

organisation in order to support the vision of autonomic P2P computing. Self-organisation is

an issue of extreme importance. In the next sections some of the concepts are outlined and

their associations with P2P systems.

1.4.3 Self-Organisation and Associations in Peer-to-Peer Networks

Self-organisation is strongly associated with autonomic computing. Self-organised systems

are characterised by autonomy, self-maintenance, self-optimised, adaptivity, rearrangement,

reproduction and emergence. These characteristics can be also attributed to autonomic

systems and the concepts follow the same pattern. However; there is a historical background

to the idea of self-organisation which does not exist in autonomic computing. Aristotle (1957)

stated that “The whole is more than the sum of its parts” which describes an attribute of

nowadays self-organised systems called emergence.

Literature Review

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 28

Self-organisation in computing has been inspired by multi-discipline fields and it seems that it

can be modeled by following various natural phenomenons. In Biology the term autopoiesis

describes a way of organisation in which every living organism seems to exhibit, view of

Maturana and Varela (1980). Similarly there is a new field in the P2P world, the autopoietic

P2P networks, which have a purpose to model complex relationships from organised systems

in nature (e.g. flying birds). Similar systems can be studied in physics and chemistry.

An important aspect of self-organised systems is how they are described and are identified.

Several attributes and definitions support the modeling of these systems and they are outlined

below according to Steinmetz and Wehrle (2005):

• System: “A system is a set of components that have relations between each other and

forms a unified whole. A system distinguishes itself from its environment”.

A computer network is an example of a system as defined above. It has components

and relationships between them (computers and connections respectively) and forms a

unified whole. A network can be seen as an individual entity which can interact with

other entities (networks).

• Complexity: “The term complexity denotes the existence of system properties that

make it difficult to describe the semantics of a system’s overall behaviour in an

arbitrary language, even if complete information about the components and

interactions is known, Bar-Yam (1997)”.

Systems with high complexity have various properties that describe their behaviour.

If we manage to change the behaviour of systems, the properties will change and this

may lead to reduced complexity.

• Feedback: “Feedback describes the return to the input of a part of the output of a

machine, system, or process”.

Feedback can lead to effects that do not have a proportional relationship with the

causes. The effects may amplify or attenuate the external influences the system

receives depending to the positive or negative feedback respectively.

Literature Review

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 29

• Emergence: “Emergence refers to unexpected global system properties, not present

in any of the individual subsystems, which emerge from components interactions”.

Emergent behaviour can be noticed through nature in various biological systems like

ant colonies and also to computing systems like some software agents and neural

networks. In such systems, the final output is unpredictable if it is based on the

distinct behaviour of individual elements. The properties of these systems are

influenced by the various parts but they are not contained in any of them.

• Complex System: “Complex systems are systems with multiple interacting

components whose behaviour can not be simply inferred from the behaviour of the

components”.

This definition imposes that the elements and their relationships emerge unpredictable

behaviour and patterns. So, emergency is a necessary property of complex systems.

• Criticality: “An assembly in which a chain reaction is responsible is called critical

and is said to have obtained criticality ”.

Criticality refers to the degree of order. A system may vary from total order to

complete disorder. In the first case, all relations are structured homogenously and are

stable without any unpredictable behaviour. In the second case, the system is

characterised by persistent stability and usually can be described by stochastic

methods. Subcritical are the systems with a low degree of order and supercritical the

systems which are largely structured. Criticality lies between these two states and is

associated with stability of system. Systems which have the tendency to appear in a

state of criticality without external influences are called self-organised critical

systems.

• Hierarchy and Heterarchy: “Hierarchy is defined as a rooted tree, which is an

undirected simple graph G, satisfying the conditions that any two vertices in G can be

connected by a unique simple path. A tree is called a rooted tree if one vertex has

been designated the root, in which case the edges have a natural orientation, towards

or away from the root. Heterarchy is a type of network structure that allows a high

degree of connectivity. By contrast, in hierarchy every node is connected to at most

Literature Review

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 30

one parent node and zero or more child nodes. In Heterarchy, however, a node can

be connected to any of its surrounding nodes”.

Hierarchy provides a degree of order and structure. In a network each node can be

accessed through a unique path. In contrast, within heterarchy any node can be

connected arbitrarily with a number of other nodes. This creates a network with more

potential paths and provides to the whole system feedback. Each structure has the

advantages and disadvantages.

• Stigmergy: “Stigmergy defines a paradigm of indirect and asynchronous

communication mediated by an environment”.

It is a property of decentralised environments in which the elements of the systems

communicate between each other by modifying their local environment.

• Perturbation: “A perturbation is a disturbance which causes an act of compensation,

whereby the disturbance may be experienced in a positive or negative way”.

A self-organised system must be able to determine its boundaries. This means that the

systems by themselves must be able to distinguish the borders between system and

environment. If this can not be achieved, the system lacks control and the environment could

influence its behaviour arbitrarily in a non-predictable way. From functionality perspective,

the system must be able to operate independently from its environment. This does not mean

autarchy, because from the definition of system there must always be an environment for

interaction. The system must find a balance and manage the trade-off between autonomy and

interaction with the environment. When it fulfills this condition, the system is said to be

operationally closed and energetically open, Maturana and Varela (1980).

In some systems it can be noticed that although their structure varies, their organisation

remains the same. It seems that structure and organisation refer to two different things. A

system with structure does not mean that it is organised. Usually, the first one refers to the

components and relations that constitute a certain unity in a concrete manner and realise its

organisation. Organisation refers to these relations between components of something to

recognise it as a member of a certain class, see Steinmetz and Wehrle (2005). The structure

can be a variable of the system, but the organisation must always exist and it is a

characteristic that classifies the system. For this reason, it is referred as the identity of the

system.

Literature Review

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 31

Organisation of the system, or acting, should be maintained in various forms in a self-

organised system. Maintenance means the ability of the system to repair and manage its

components. The components must support the viability of the system and they must not be

isomorphic, due to the fact that the purpose is the retaining of identity although the structure

may change. In addition, system perturbations may disorder the system. By allowing a degree

of heterarchy in the system in order to enable restructuring, the components can interact and

receive or provide useful feedback. This feedback can be either positive or negative.

Self-organised systems can also be unstable which may lead them to breakdown, or inflexible

which prevents them form evolving and adapting themselves to new conditions. The gap is

bridged by criticality which balances the dynamics of the systems.

Self-organisation can not always provide improved systems in computer science. It is clear

that existing self-organised systems lack management for controlling security and efficiency

issues. The other properties of autonomic computing may fulfill the requirements, but it is

certain that further research is needed towards this orientation.

Focusing on more details in the P2P world, there is the need to classify different P2P systems

according to the degree of self-organisation. For this reason self-organisation must be outlined

according to criteria and characteristics, which; H. De Meer and C. Koppen (2005) describe.

There are two classes of self-organisation criteria. The basic and autonomy criteria. The

following points outline these characteristics:

For the basic criteria there are the following:

• Boundaries: The boundaries of P2P systems must be self-defined. The boundaries

are meant as the points where new nodes can enter the system. One way that this

knowledge can be provided is by establishing special nodes called bootstrap peers.

• Reproduction: In a P2P network, nodes can form different structures and operations

like adding, removing or changing a peer, its data, its connections, its neighbours or

generally the relationships as a sign of reproduction. It is not important for these

operations to lead to isomorphic relationships but the most important is to support

mutations and viabilities.

Literature Review

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 32

• Mutability: This is similar with reproduction with the difference that mutability

refers to the change of structure whereas reproduction to reproduction of the

structure.

• Organisation: Refers to the outline of the system in terms of hierarchy and

heterarchy.

• Metrics: The metrics are associated with the detection of perturbations which can be

the following:

o Failure of peer or connection.

o Overload of DoS attacks.

o Data manipulation.

Similar effects to perturbations have the “freeriders”, which are peers that consume

resources of a system without offering their own. However; they are not perturbations

because their effects influence the system internally.

• Adaptivity: Adaptivity refers to the reactions of the system to avoid the negative

effects of perturbations.

For the criteria for autonomy the following are defined:

• Feedback: The negative or positive feedback in a P2P network can appear in a form

of exchanged messages between the peers.

• Reduction of complexity: The purpose of some P2P systems is to introduce some

entities with various roles in order for them to hide details from the environment and

reduce the complexity. The virtual servers that are introduced in the proposed model

(see section 2.2.1) follow this concept.

• Randomness: Organisation and structures in P2P networks are driven by random

events for creativity. This can reduce the complexity and provide positive results.

Literature Review

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 33

• Self-organised criticality (SOC): The effects of perturbations in P2P systems require

flexible systems for avoidance and robust operation. Having a system with too much

order or complete disorder can not support the fade out of perturbations. Criticality

can provide the desired flexibility for managing perturbations.

• Emergence: It is possible that during the design phase of P2P systems, some of the

properties have not been predicted. The system does not react by following certain

rules and this behaviour is attributed to emergence.

Based on the above criteria, the self-organisation of Gnutella 0.4 (see Gnutella 0.4) can be

examined. Starting from the boundaries, in Gnutella every peer is equal and can have the role

of bootstrap server. For this reason any peer can enter and leave the system, and there are not

determined boundaries. The invariant heterarchical structure also restricts the reproduction

and mutability of the system. The organisation property can not be attributed to Gnutella as it

is based only to the ping-pong messages. For this reason there is lack of feedback and

adaptivity in the system. However; metrics can be realised in the system for controlling

overloading issues caused by flooding. Randomness and self-organised criticality can not be

attributed to Gnutella as it does not lead the system to creativity state and there is not the

desired adaptivity between complete order and disorder. The system appears the attribute of

emergence as there are nodes with high capabilities and they can offer resources to many

peers and respectively there are other peers which consume resources without offering

(freeriders). The whole structure is formed without external influence. The reduction of

complexity can be associated with the power law distribution of node degree.

To conclude, autonomic computing can lead the design evolutions and can be the base of the

concept of future systems. P2P networks can really benefit from this philosophy. Self-

organisation seems to offer powerful characteristics in these systems but it is not panacea for

solving the problems, view of Li and Liao (2005). It may lead to additional barriers. More

research is needed. Biological models and more widely theories from multidiscipline fields

can inspire the realisations of new P2P systems and the development of solutions to existing

problems.

Model Description

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 34

2. MODEL DESCRIPTION

The purpose of this developed model is the load balancing of Gnutella networks which is used

as this case study. Gnutella networks, as it is outlined in section 2, suffer from high bandwidth

consumption. This creates unbalanced nodes which may fall in the state of being unable to

respond and process messages. At first sight, the solution seems difficult because flooding

forces a horizon on the load and creates some virtual regions of high loading. The inspiration

and orientation of this work is exactly to “break” this horizon and create a dynamic and

adaptive way to load balance the network. There are also more reasons that networks which

adopt the flooding are interesting for development of load balancing algorithms. Some of

them are:

• It is a searching method which its effects over a P2P network have been studied

extensively and the advantages and disadvantages are known to research community.

• It is one of the main techniques used in unstructured P2P networks.

• The network is evolved rapidly.

• It is a method which can be modified in an under development model like ERG or be

upgraded to a more efficient searching technique.

• It creates an ideal load environment for experiments and model developments on

capacity sharing.

• It is easy to be deployed in simulation level.

Balancing the load in an unstructured peer-to-peer network is challenging. Reasons include:

• The spatial distribution of the nodes and resources is heterogeneous.

• There is not a significant amount of information about the network. Structured

schemes are better defined and easier to control and predict their behaviour.

Model Description

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 35

• It is dynamic and this results in a high number of load changes in the network.

• They have been proven quite weak on this issue, Ritter (2001).

The next sections explain the functionality of the model and illustrate a detailed description.

The algorithms are described in detail and figures show what happens when there are

overloaded nodes. Two variations are proposed which have the same result, however; in a

different way. Theoretical analysis of the two variations and investigation of how these

algorithms may fail are illustrated. Furthermore; the load balancing messages specification is

presented. Finally, the metrics of the evaluation of the load balancing models are introduced

with explanations of their concept and their importance to the models success.

2.1 The Purpose and Focus of Load Balancing Scheme

As it is mentioned in 1.3, load balancing is a multidimensional operation. The first objective

of this work was to define where exactly the load balancing scheme would be applied. The

most serious problem in Gnutella networks is the high number of query messages that can

cause failures in nodes. In Gnutella, every query is forwarded until the TTL value. This

introduces a negative factor to the success of queries. If the node does not process the

message, it will not forward it and in the end the query success may be affected (it is one of

the purposes of this work to examine if the overloading can affect the query success, see

section 4.7). In addition, it is speculated that the load balancing that is applied benefits the

system positively in other overloading factors of the networks.

Another purpose is to achieve the best results at the lower cost. This means, keeping the

information and process overhead low without introducing additional problems to the system.

Finally, it would be interesting to examine any new properties of the system that are gained

due to ERG model. Is the system better self-organised? Does it get any new properties from

the criteria defined in section 1.4.3? Does it appear adaptivity? And in the end, does it make

Gnutella more efficient and scalable?

Model Description

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 36

2.2 Load Balancing Model

In this section the load balancing model is described. Details about the proposed algorithms

are provided and explanations of how the capacity sharing is achieved between the

underloaded and overloaded nodes. Furthermore, additional details and discussions about how

the models behave in extreme conditions, when they can fail and the comparison and contrast

between the two variations are provided.

2.2.1 The concept

In a Gnutella network a node may become easily overloaded by the queries it receives.

Regardless if this node has the resources or not, it must forward the message to all its

neighbours. The importance here is that the load of all the nodes is caused by the nodes that

send queries to them. It seems that the node degrees together with the heterogeneity of query

generations are strongly associated with the overload in each node.

ERG focuses on modifying these relationships between the nodes that cause the overload and

other nodes that are considered underutilized. The last are the nodes that do not seem to

receive many queries from other nodes. Figure 1 shows a state of an overloaded and

underloaded node in a Gnutella network:

Figure 1: Overloaded and Underloaded nodes in a Gnutella network

4 queries/min

5 queries/min

5 queries/min

7 queries/min

3 queries/min

2 queries/min

1 queries/min

0 queries/min

Overloaded

 (>10 queries/min)

Underloaded

 (<3 queries/min)

Model Description

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 37

In such a state, the proposed solution is based on the idea of unregistering the overloading

node as a neighbour to the nodes that cause the overloading and register as a new neighbour

the underloaded node. This action can be seen as a logical movement of the nodes that cause

the overloading to the underloaded node. It would not be robust if the movement simply

transfers the overloading to the underloaded node, and for this purpose special attention in

queries rates must be paid. Figure 2 illustrates the result of the balancing:

Figure 2: Logical movement of a node and load balancing

It is important to point out that the node can remain underloaded but that it must not be

brought to an overloading state.

This whole action is not simple; it must be initiated and coordinated in a consistent way

without influencing the functionality of the network. It does not seem a good solution for the

overloaded node to start searching arbitrarily for underloaded nodes. It might be possible that

it is unable to do this due to its overload and as such a searching may add to the network

overhead of information. This approach seems to create more problems than it can solve. The

proposed model is based on the idea of virtual servers for coordinating and managing the load

balancing operations between all the interested components as they are outlined in the two

above figures. The next subsection outlines the role of the virtual server in ERG model.

4 queries/min

5 queries/min

5 queries/min

7 queries/min

3 queries/min

2 queries/min

1 queries/min

0 queries/min

Balanced

 (9 queries/min)

Balanced

 (8 queries/min)

Model Description

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 38

2.2.2 The Role of Virtual Servers

A virtual server, also known as; superpeer, ultrapeer or supernode, in a P2P network, is a

normal computer that retains its basic functionality with all the other nodes in the network but

it is assigned to it a special role for a special purpose because of its high capabilities.

Performance is the criterion that makes a node virtual server in a P2P network. Performance

incorporates a range of other criteria, but the most important are the hardware resources

(CPU, hard disk, memory) and networking availability (bandwidth, low number of failures

and high number of time connectivity). The purpose of the virtual server is not to bring back

centralized architectures but to exploit the non-uniform resources that exist in every network

by assigning some special roles to them.

In ERG, we establish the idea of virtual servers for load balancing. More specifically they

support the actions of the logical movements described in the previous subsection.

Every node can be registered to one or more virtual servers. The registration and the

discovery of virtual servers in the network take place during searching. If a virtual server

receives a query from any node it can send a PONG message (see section 1.2.2) with an extra

flag saying that the node is a virtual server. The query generator or the node which forwarded

the query can then decide if it adds the virtual server to the virtual server list as long as it does

not already exist there. It must be noticed here that a virtual server also keeps record of other

virtual servers for two reasons:

• A virtual server is an equal peer and its only extra role is to balance the load of the

network.

• A virtual server must know others in case it is unable to fulfill its role and can rely. In

this case, one other virtual server from its list becomes responsible. The next section

provides more details about such scenario.

Upon when nodes have registered virtual servers, the load balancing scheme can begin its

work. More specifically, according to the capabilities of each node, there are thresholds which

state if a peer is underloaded, balanced, overloaded or in a state to loose messages (loss

state). If a peer is in the state of being underloaded, it sends a message to one of the virtual

servers to advertise itself (ULN, see section 2.5). The load balancing operation is initiated

Model Description

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 39

when an overloaded node request help from a virtual server (VSS_RFH / VSD_RFH, see

section 2.5). More details are illustrated in next sections.

Before the detailed description of the algorithms, it is imperative to mention an important

issue. Before experiments are carried out it is not clear if it is the right decision to enable the

virtual server to manage all the operations of the load balancing. On the other hand, it is not

best practice to leave the overloaded node balance itself. During model design, two

intermediate and moderate approaches have been identified in which the one charges the cost

of balancing mostly in virtual server and the other to overloaded node. It is expected that

following these two different approaches, interesting points can be raised about the overhead

of the models and what the potential difficulties are for realising them. It is important for the

comparison that the algorithms lead to the same load balancing outcome and examine other

factors as extra overhead of the models, overloading threat of virtual servers due to the

models e.t.c.

The next two sub-sections introduce the two model variations and the algorithms.

2.2.3 Virtual Server Supervised Model

In this variation the virtual server has a more passive role and its purpose is to inform the

overloaded node about which available underloaded nodes exist in the network. Then it is the

overloaded node which must negotiate about the logical movements.

If a node becomes overloaded, it searches its list of the virtual servers and selects one of them

randomly. Then it sends a message to the selected one requesting help and with it, it sends its

query rate distance, which is the total amount of overload. The virtual server will look up for

an underloaded with the lower query rate per minute in its queue and will also check if the

overload (query rate distance) of the overloaded node can make the underloaded node

overloaded as well. If the conditions are satisfactory, the virtual server responds to the

overloaded node with the address of the chosen underloaded node and its query rate. The

overloaded node keeps statistics of the nodes by which it receives queries. It checks which of

these nodes can be logically moved to the underloaded node in order for it to become

balanced, maintaining the underloaded node, underloaded or balanced but not overloaded. It

also calculates the total load that is transferred if one of these nodes satisfies the mentioned

conditions. If there are nodes available, then it sends to the underloaded node a message

Model Description

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 40

requesting the logical movement of the nodes (the reason for the need of confirmation is to

check if the underloaded node has become balanced through time and the underloaded to

update its statistics information). The message contains the total amount of load that is desired

to be moved together with the list of the nodes in order the statistics table of the underloaded

node to be updated. It is chosen to retain the consistency of the data, so any logical movement

retains the total loads and the indexes of the statistics tables. If the rates of the underloaded

node have not changed to make the logical movements infeasible, the underloaded node

confirms the actions. Then the overloaded send message to the nodes that cause the overload

to send queries to the new node. The scenario is illustrated in figure 3, and the messages

description is outlined in table 9. More information about the messages and their content is

provided in section 2.5.

Figure 3: Load balancing in VSS variation

4 queries/min

5 queries/min

5 queries/min

7 queries/min

3 queries/min

2 queries/min

1 queries/min

0 queries/min

Overloaded

 (>10 queries/min)

Underloaded

 (<3 queries/min)

Virtual Server

Virtual Server

9 queries/min

4 queries/min

3 queries/min

(1)

(2)

(3)

(4) (5)

Model Description

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 41

Table 9: Messages in VSS variation

 Message ID Message

1 VSS_RFH Request for help

2 VSS_RTOL Response to overloaded

3 VSS_RTUL Request to underloaded

4 VSS_CTOL Confirmation to overloaded

5 VSS_UAA Unregister and assign

If the virtual server does not have any available underloaded node, or the existing ones can be

potentially turned to be overloaded if there are logical movements, the request for help from

overloaded node is forwarded in another virtual server. The procedure is recursive until a TTL

value. Figure 4 illustrates such a scenario:

Figure 4: Forwarding of the request for help in another virtual server in VSS variation

The algorithm in detail is illustrated below together with some name conventions (message

names are explained in details in section 2.5):

• OLThr: Overloading threshold.

4 queries/min 5 queries/min 5 queries/min

7 queries/min

3 queries/min

Overloaded

 (>10 queries/min)

Underloaded

 (<3 queries/min)

Virtual Server

Virtual Server

2 queries/min

4 queries/min

3 queries/min

(1)

(2) (3)

(4) (5)

(1)

6 queries/min

4 queries/min

3 queries/min

Model Description

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 42

• ULThr: Underloading threshold.

• VSIP: Virtual server IP.

• VSList: Virtual servers list.

• QRDist: Query rate distance.

• QRDistTotal: Total query rate that is moved.

• ULIP: Underloaded node IP.

• ULQueue: Queue of underloaded nodes.

• LBList: Load balancing list with the nodes that have been calculated to be moved.

• neighbList: List of neighbours of a node.

• LBStatDict: Load balancing statistics kept in a dictionary.

Algorithm ERG(VSS):

 while running do

 if QR > OLThr then

 VSIP←selectRandom(VSList)

 QRDist← QR - OLThr

 sendMessage(VSS_RFH, VSIP, QRDist)

 else if QR < ULThr then

 VSIP←selectRandom(VSList)

 sendMessage(ULN, VSIP, QR)

 if message queue is not empty then

 if message ID = ULN then

 if message.sourceIP exists in ULQueue then

 update(ULQueue, message.QR)

 else

 add(message.QR, message.ULIP)

 else if message ID = VSS_RFH then

 if ULQueue != empty and checkQR(message.QRDist) then

Model Description

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 43

 QRDist←ULQueue.getFirstKey()

 ULIP←ULQueue.getFirstElement()

 sendMessage(VSS_RTOL, ULIP, QRDist)

 ULQueue.remove(QRDist, ULIP)

 else if message.TTL !=0 then

 message.VSIP← selectRandom(VSList)

 Message.TTL← Message.TTL-1

 sendMessage(message)

 else if message ID = VSS_RTOL then

 i←0

QRDistTotal← 0

 while i < size of LBStatDict do

 if QR(i)+QRDistTotal+message.QRDist< OLThr then

 LBList.add(IP(i), QR(i))

 QRDistTotal← QRDistTotal+QR(i)

 i←i+1

if LBList is not empty then

sendMessage(VSS_RTUL, message.ULIP, QRDistTotal,

LBList)

 else if message ID = VSS_RTUL then

 if QR+message.QRDistTotal<OLThres then

 LBStatDict.add(message.LBList)

 QR←QR+QRDistTotal

 decision←true

 sendMessage(VSS_CTOL, message.sourceIP, decision)

 else

 decision←false

 sendMessage(VSS_CTOL, message.sourceIP, decision)

 else if message ID = VSS_CTOL then

 if decision = true then

 LBStatDict.update(LBList)

 QR←QR-QRDistTotal

i←0

 while i < size of LBList do

sendMessage(VSS_UAA, LBlist(i),

message.sourceIP)

i←i+1

 else if message ID = VSS_UAA then

 neighbList.replace(message.sourceIP, message.ULIP)

Model Description

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 44

2.2.4 Virtual Server Driven Model

In this variation, the load balancing is achieved successfully as in the previous one, but in a

different way. The purpose here is to avoid the extra cost to the overloaded node and the

virtual server undertakes most of the actions to balance the nodes. This seems the most

practical, but may introduce overloading issues to virtual servers from load balancing

messages. One of the purposes of this work is to examine what really happens in these models

and how much extra workload the virtual server could handle under extreme conditions.

The load balancing starts with the overloaded node requesting help to one of its virtual

servers. It sends the query rate distance and the dictionary with the statistics of the nodes that

send queries. Then the virtual server must complete the whole process to calculate, decide and

send messages to all the nodes. It starts by searching an underloaded node in the queue that

will satisfy the condition of avoiding the transfer of overload from the one node to the other.

It also chooses which nodes will be moved and the total query rate that will be transferred.

After finishing calculations and decisions, first it sends a message to the underloaded node

informing it for the new load that is transferred and the nodes that will send queries in order to

update the dictionary with the statistics. The next messages are to the nodes that should stop

sending messages to the overloaded node, with the new address to replace in their neighbour

list. The last message is a confirmation to the overloaded node that the procedure was

successful together with the load that was moved and the new updated dictionary with the

statistics. Figure 5 illustrates the interactions between the nodes during load balancing

together with brief messages descriptions in table 10. More information about the messages

and their content is provided in section 2.5.

Model Description

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 45

Figure 5: Load balancing in VSD variation

Table 10: Messages in VSD variation

 Message ID Message

1 VSD_RFH Request for help

2 VSD_RTUL Request to underloaded

3 VSD_UAA Unregister and assign

4 VSD_RTOL Response to overloaded

If again, for any reason the virtual server fails to find an underloaded node, either because

there is not any in the queue or the logical movements make the underloaded node

overloaded, the request for help is forwarded to another virtual server until a TTL. A

respective example is illustrated in figure 6:

4 queries/min

5 queries/min

5 queries/min

7 queries/min

3 queries/min

2 queries/min

1 queries/min

0 queries/min

Overloaded

 (>10 queries/min)

Underloaded

 (<3 queries/min)

Virtual Server

Virtual Server

9 queries/min

4 queries/min

3 queries/min

(1)

(2)

(3)

(4)

Model Description

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 46

Figure 6: Forwarding of the request for help in another virtual server in VSD variation

The VSD algorithm together with some name conventions is illustrated below in detail:

Algorithm ERG(VSD):

 while running do

 if QR > OLThr then

 VSIP←selectRandom(VSList)

 QRDist← QR - OLThr

 sendMessage(VSD_RFH, VSIP, QRDist, LBStatDict)

 else if QR < ULThr then

 VSIP←selectRandom(VSList)

 sendMessage(ULN, VSIP, QR)

 if message queue is not empty then

 if message ID = ULN then

 if message.sourceIP exists in ULQueue then

 update(ULQueue, message.QR)

 else

 add(message.QR, message.ULIP)

 else if message ID = VSD_RFH then

 noMoreUL←false

4 queries/min 5 queries/min 5 queries/min

7 queries/min

3 queries/min

Overloaded

 (>10 queries/min)

Underloaded

 (<3 queries/min)
Virtual Server

Virtual Server

2 queries/min

4 queries/min

3 queries/min

(1)

(2)

(3)

(4)

(1)

6 queries/min

4 queries/min

3 queries/min

Model Description

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 47

 if ULQueue != empty and checkQR(message.QRDist) then

 QRDist←ULQueue.getFirstKey()

 ULIP←ULQueue.getFirstElement()

 else

 noMoreUL←true

 if noMoreUL= true and message.TTL != 0 then

 message.VSIP← selectRandom(VSList)

 Message.TTL← Message.TTL-1

 sendMessage(message)

 else

 i←0

QRDistTotal← 0

 while i < size of LBStatDict do

if QR(i)+QRDistTotal+ QRDist< OLThr then

 LBList.add(IP(i), QR(i))

 QRDistTotal← QRDistTotal+QR(i)

 i←i+1

if LBList is not empty then

 ULQueue.remove(QRDist, ULIP)

sendMessage(VSD_RTUL, ULIP, LBList,

QRDistTotal)

i←0

while i < size of LBList do

sendMessage(VSD_UAA, LBList(i),

message.sourceIP, ULIP)

i←i+1

LBStatDict←update(message.LBStatDict)

sendMessage(VSD_RTOL, message.sourceIP,

LBStatDict, QRDistTotal, true)

else

sendMessage(VSD_RTOL, message.sourceIP,

null, null, false)

 else if message ID = VSD_RTUL then

 LBStatDict←update(message.LBList)

 QR←QR+message.QRDistTotal

 else if message ID = VSD_UAA then

 neighbList.replace(message.OLIP, message.ULIP)

 else if message ID = VSD_RTOL then

 if decision = true then

Model Description

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 48

 LBStatDict←update(message.LBStatDict)

 QR←QR-message.QRDistTotal

2.2.5 Where load balancing may fail - Extreme Conditions

From a theoretical perspective, the two proposed algorithms support robustness and

successful load balancing without introducing to the network additional problems. However,

the cases of failures, can be distinguished and also the reasons. It is important to clarify that

failure of load balancing is faced in the overlay network and not in the underlying layer.

Failure of load balancing is defined as the failure of an overloaded node to initiate the

procedure of load balancing or the unsuccessful logical movement of the nodes that cause the

overload.

The following reasons, which belong to the above definition, have been identified:

• The overloaded node does not have any registered virtual server.

• The virtual server does not have any registered underloaded node for moving the load

and the TTL of the RFH message is zero and it can not be forwarded further.

• The virtual server has registered underloaded nodes but the overload of the

overloaded node makes it overloaded as well or the transferred nodes can not make

the overloaded node balanced. In addition, the TTL of the RFH message is zero and it

can not be forwarded further.

• The virtual server has found an underloaded node but it is not any more underloaded.

Most of these reasons are extreme conditions and it does not seem that they can appear in the

network often except the last case. There is the need for queues on the virtual servers

containing the underloaded nodes to be consistent. In VSS model the VSS_CTOL message

guarantees this consistency. In VSD the virtual server is based on its local data. It may need to

negotiate further with the underloaded nodes as a mechanism for retaining the consistency.

The other reasons are related to the number of virtual servers in the network, the number of

Model Description

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 49

connections with the virtual servers and the TTL value for the requests for help. All these can

be handled easily and in a predictable way.

2.2.6 Virtual Server Supervised versus Virtual Server Driven

Before experimental evaluation, the two variations can be examined from a theoretical

perspective. The purpose of this comparison is to reveal which are the advantages and

disadvantages of each one and how each one scales in a Gnutella network.

The first noticeable difference is the number of messages. VSS consumes 4+k messages,

where k is the number of nodes that should be logically moved. VSD consumes 3+k

messages. There is an additional message in VSD but VSS seems to retain the consistency of

underloaded nodes in virtual servers better. In case of failure VSS initiates the procedure

again. In VSS either the virtual server looks for underloaded nodes or it ends the load

balancing unsuccessfully and the procedure is initiated in a next time interval. Furthermore,

although VSD requires fewer messages, it transfers more data in the messages (the statistics

dictionary).

The process overhead in VSS is charged in the overloaded node. This runs the risk of being

unable to respond. The local state of the overloaded node is not transferred in the network

(except the query rate distance) as it happens in VSD model. It is believed that a node that can

tolerate an extra processing overhead can adopt VSS model because it reduces data

transferred and allows the virtual server fewer tasks to process. On the other hand, if the

overloaded node is in the extreme condition that may not be able to complete load balancing,

then VSD model can be applied with extra processing overhead to virtual servers.

Experiments reveal how much the overhead is in each case, the extra messages that are

required for load balancing and the success of each model.

2.5 Messages

ERG messages follow Gnutella v0.4 protocol specification (see Gnutella 0.4 specification).

All the messages described in section 1.2.2 can be supported by the system. As far as the load

Model Description

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 50

balancing messages are concerned, the descriptor header is kept and the following messages

are defined in the payload descriptor:

Table 11: UnderLoaded Notification (ULN)

For VSS variation:

Table 12: Request For Help (VSS_RFH)

Table 13: Response To OverLoaded (VSS_RTOL)

Table 14: Request To UnderLoaded (VSS_RTUL)

Table 15: Confirmation To OverLoaded (VSS_CTOL)

Table 16: Unregister And Assign (VSS_UAA)

For VSD variation:

Descriptor Header Queries Rate

Descriptor Header Queries Rate Distance

Descriptor Header Underloaded IP Queries Rate

Descriptor Header IP Cause Servents List Queries Rate Distance Total

Descriptor Header Confirm

Descriptor Header Underloaded IP

Model Description

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 51

Table 17: Request For Help (VSD_RFH)

Table 18: Request To UnderLoaded (VSD_RTUL)

Descriptor Header IP Cause Servents List Queries Rate Distance Total

Table 19: Unregister And Assign (VSD_UAA)

Descriptor Header Underloaded IP Overloaded IP

Table 20: Response To OverLoaded (VSD_RTOL)

Descriptor Headed
Load Balancing Statistics

List
Queries Rate Distance Total

2.6 Evaluation and Metrics

The following metrics are defined for the evaluation of ERG system:

• Number of underloaded, balanced, overloaded and in loss mode nodes, ULN ,

BALN , OLN , LOSSN .

• Number of nodes Handled Successfully, SN : The number of nodes subset of the

sum of number overloaded and underloaded which handled successfully

(SN ⊂ (OLN + ULN)).

• Load Balance Success, SLB : The number of nodes that handled successfully divided

by the sum of number of overloaded and underloaded nodes,
)(ULOL

S

NN

N

+
.

Descriptor Header
Load Balancing Statistics

List
Queries Rate Distance

Model Description

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 52

• Recall, R : The total number of files discovered divided by the total number of

relevant files in the network,
l

Disc

F

F

Re

.

• Traffic, ERGM : The total number of messages the model produces.

• Discarded Messages, DISCM : The number of messages that are discarded due to the

overload in nodes.

• Standard Deviation of Query Rate, QRσ : The standard deviation of the query rates

of all the nodes in the network, ∑
=

−
N

i

i xx
N 1

2)(
1

.

• Query Success, SQ : The number of successfully answered queries divided by the

total number of queries generated,
Q

QH

N

N
.

• System Availability, SystAv : The percentage of the availability of the system,

calculated from the total overload and the total load of all the nodes in the system,

total

Total

L

OL
−1 .

The most obvious and simple results can come from the calculations of the number of

underloaded, overloaded, balanced and in loss mode nodes in the system. The desired result

would be a system with most nodes being balanced. This is associated with the standard

deviation, so by eliminating the standard deviation, it is expected that the number of balanced

nodes will increase.

For evaluation of the load balancing scheme and its failures, we can calculate the load balance

success. Furthermore the traffic of the model is a good indication of the overhead of the

proposed models. The discarded messages are one of the most important metrics. Comparison

between the pure Gnutella and the two variations will reveal if there is real improvement in

the performance of Gnutella.

Model Description

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 53

Another important metric is the system availability, as it is defined in Li and Liao (2005),

which is calculated globally in the system. This is a metric for revealing the effects of load

balancing in the overall system.

Finally, it is believed that discarded messages and failures in the system affect the query

success and recall. It would be an interesting investigation of any existence of potential

improvements in these metrics by the load balancing models.

Model Simulation

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 54

3. MODEL SIMULATION

In this section the simulation of the described model as a tool for evaluating its success and

study its behaviour are outlined. Testing of an algorithm or a system can be realised either in

reality, by building a real networking system which will incorporate the functionality and

behaviour of the model / algorithm or in the simulation level. The first way is closer to

transferring a technology to the form of a prototype, or a functional demo. This reveals a

mature technology with positive indications that it can work well and efficiently. In practice,

before this stage there is the simulation stage. For avoidance of problems, developers first

want to see how the system behaves in a simulating environment, with assumptions, different

parameters and multi-varied conditions. Furthermore, in academic world, simulation is a

serious tool for theory proof and it is used extensively in various scientific fields.

In P2P world, simulations are extremely important and can be sometimes the only tool of

researchers to test and evaluate algorithms and networking models. This is because P2P

networks do not have any centralized entity to collect global information in the network.

Nodes may be counted to hundreds of thousands and the relationships to millions. Such a

networking state can not exist in a university environment or in any lab or other research

facilities. Simulation seems the only way in P2P world, at least at the beginning.

For this work, the concept is the same. An unstructured P2P network like Gnutella is fully

decentralized, with an arbitrarily number of nodes and connections. Additionally, the

proposed algorithms are also distributed and dynamically functioning, for this reason, studing

their behaviour locally is infeasible and bad practice.

ERG is simulated in a Java simulator, developed from scratch for the purpose of serving the

needs of the model, but also as a framework for a future and further realization of a generic

P2P simulator with advanced functionalities. It deserves describing its architecture, its

functionalities and its flexibility it provides for ERG simulation. The next subsections focus

on the mentioned descriptions.

Model Simulation

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 55

3.1 Supported Functions

The purpose of this simulator is on the one hand to serve the simulation of the ERG model in

a Gnutella 0.4 Network and on the other hand to support the foundations of more advanced

and generic functionalities. The supported functions are outlined below:

• Creation and basic functionality of a node: The simulator can realise the creation

of a node by allowing it to specialise its behaviour, take special roles (be a virtual

server), keep useful information and monitor its state.

• Creation of a Gnutella Network: The simulator creates a Gnutella Network and

some of the parameters that the user can modify include the following:

o Number of nodes.

o Number of neighbours of each node.

o The TTL of the queries.

o Searching techniques.

� Flooding.

� Agents, Pournaras (2007) .

o Circles (cut or not).

• File Distributor: There are different schemes in a P2P network for looking up

resources. The idea of keywords is established. The distributor assigns in all the

nodes an equal number of files, with a certain number of keywords and each file is

described by a variable number of keywords defined be the user.

• Downloading: The simulator supports downloading simulation with files being

copied in the nodes. This provides more realistic evolutionary searching scenarios.

Model Simulation

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 56

• 3-D Network Visualization: This functionality is partially supported and it is part of

further work and extension.

• Load Balancing: The simulation of the two variations. Some of the parameters that

can be modified include:

o Choice of the load balancing variation, VSS or VSD.

o Number of virtual servers.

o TTL of the requests for help.

o The underloaded, overloaded and in loss mode thresholds.

• Running time: The execution of the simulation, which can be dynamic with:

o Different number of queries in each iteration.

o Different number of iterations.

• GUI: A simple user interface for controlling all the above functionalities.

3.2 Choice of Technologies

The choice of the technology has been regarded an important issue and study of related

simulators, like the work of Ting and Deters (2003), has been critical. Java has been chosen as

the main technology for building the simulator for the following reasons:

• It has become faster, sometimes even faster than C++, Almaer (2004).

• It can support the conceptual background of the model in the best way, due to its fully

object-oriented nature.

Model Simulation

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 57

• It makes memory management an easy task.

• It has various libraries and APIs for embedding in Java other powerful extensions and

functionalities.

• The simulator can benefit from the future evolutions of the language.

A P2P simulator also needs a powerful environment for working, in a low level, with data

structures. Java supports many powerful data structures, however; JDSL (Java Data Structures

Language, see Tamassia, Goodrich, Vismara, and Handy (2005)) is chosen, as integration, for

the following reasons:

• It has one of the best range of data structures which includes and provides support of:

o Sequences (lists, vectors).

o General-purpose trees.

o Priority queues (heaps).

o Dictionaries (hash tables, red-black trees).

o Graphs.

o Template algorithms.

o Sorting algorithms.

o Graph traversals.

o Shortest path, Minimum spanning tree.

o Iterators.

o Accessors (positions and locators).

Model Simulation

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 58

o Decorations (attributes).

• Flexibility: For modeling a network, a database and a message by using the developed

data structures or other built on top of JDSL library.

• Reliability: A range of exceptions which secure the code.

• Efficiency: Most data structures offer the best-possible asymptotic time complexity

for every supported operation and caching.

• Object-orientation: View of data structures and algorithms as objects.

The project has been developed in NetBeans 5.5. It is also powerful and this version is robust

with plenty of functionalities.

The 3-D network visualization, which is under development, is built with JOGL (Java

OpenGL) API, which provides high performance and the advantages of OpenGL (3-D

hardware acceleration).

3.3 Design and Architecture

At first, the components and their relationships are defined. The simulation is consisted of

four components in a layer hierarchy. The User Interaction and Parameterization (UIP) is the

upper layer and parameterises the system according to the user feedback. It also receives the

output from the simulation. The ERG Protocol (EP) layer, is the set of parameters and rules

that create the Gnutella network and form the load balancing scheme. It is parameterised by

the UIP layer and provides information to PN layer (see below).

The next layer is the Simulator Engine (SE). This layer is a middleware and it coordinates the

relationships between the UIP and the EP and PN. It also collects useful information for

calculating various metrics. The P2P Network layer (PN) is the last one in this hierarchy. It

forms the Gnutella network and communicates both with EP and SE layers. Figure 7

illustrates the layers hierarchy of the components and their relationships and interactions in

ERG simulator:

Model Simulation

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 59

Figure 7: Layer Architecture of ERG Simulator

During the design phase, the following classes have been decided to form the simulator:

• Node: It keeps the information and the functionality of a node in the network. It must

be able to receive, process and send messages. It must also retain information and be

able to process it on demand.

• Message: This class is the messages specification of ERG protocol. It defines the

messages, the fields and other useful properties .

• ERGProtocol: It retains the parameters that configure the network and the load

balancing model

• P2PNetwork: Creates the network and implements the simulation.

• Agent: It implements the agent based searching technique

• Visualiser: The GUI of the simulator.

ERG Protocol

Simulator Engine - Middleware

P2P Network

User Interaction and Parameterization

Model Simulation

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 60

• Net3D: The class that creates the 3-D visualization of the network.

• ScreenManager: Configures the screens of GUIs.

Figure 8 illustrates the UML class diagram of the ERG simulator. For simplicity, only the

operations have been included and not the attributes. However, the arguments and the return

types of the methods are included:

Model Simulation

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 61

Figure 8: UML Class Diagram of ERG Simulator

Model Simulation

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 62

From the above diagram, it can be noticed that P2PNetwork class instantiate Node class for

the creation of the Gnutella network and these two classes form a one-to-many relationship.

Furthermore, the P2PNetwork uses always one instance of ERGProtocol (one-to-one

relationship). Message class has a many-to-many relationship with Node class, because

many messages can be sent and received in many nodes of the network. The packages which

are depicted in the diagram provide usage access to their classes by the classes of ERG

simulator and the input / output is transferred between the P2PNetwrok and Visualiser

class.

Based on this design and architecture, the implementation of the ERG simulation is realised

and is described in detail in the next subsection.

3.4 Implementation and Graphical User Interface

Implementation started by building the general components of the simulator and then going

into deep details of the simulation. Message class is the messages specification. It defines

the message identifiers as static Strings and also defines the fields of the various messages.

The class contains methods for creating a message. For example, the method

createVSS_RFH(…) configures an instance of a Message class to carry information

about the VSS_RFH message. The following code shows how the appropriate message can be

configured:

Message mess=new Message();

String source=”111.111.111.111”;

String destination=”222.222.222.222”;

float load=5.2;

mess.createVSS_RFH(source, destination, load);

Then this instance can be sent and accessed simply by its variables which the above method

has configured.

ERGProtocol class contains information about the network, how it is configured, the load

balancing parameters and also is a global component which keeps track of the metrics and the

statistics that are calculated. It also creates some basic information about the network, such as

Model Simulation

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 63

neighbour lists, virtual server connections and more. In this class, P2PNetwork and Node

have access to get useful data.

P2PNetwork class accesses the ERGProtocol to create the network and initialise the

system. Then it creates instances of Node class and puts them in an OrderedDictionary

with the IP being the key and the instance the element. In this way, access to every node, from

a global perspective, can be achieved. This class is the main class and it runs the simulation. It

also prints the statistics of the calculated metrics.

The node class is the most important. It incorporates some basic functionality that must exist

in every node and also has some fields that indicate if the node is virtual server. The node

contains the load balancing algorithm and can run it if its query rate exceeds the overload

threshold. The most important method of this class is the processMessage(Message

mess), which can be outlined with the following code:

public boolean processMessage(Message mess){

 boolean success=false;

 if(message.PaypadDescriptor.equals(message.Query)){

 //make processing for a query

 }

else{

 //check every possible message descriptors

 //and embed the respective operations

 }

 return success;

}

The files in the node are saved in a Dictionary, with the key of the dictionary being the

keyword of the file. The neighbours of the node are kept in an ArraySequence. The load

balancing statistics are retained in a Dictionary and the underloaded nodes in virtual

servers in a PriorityQueue, prioritised by their query rate. The OrderedDictionary

is implemented with a RedBlackTree.

At the beginning of every iteration the queries are generated. The processMessage()

method of the node works recursively, by first accessing the node from method

selectNode() of P2PNetwork class and then calling the processMessage()

Model Simulation

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 64

method of the desired Node. This is efficient and conceptually accepted after having defined

simulation engine as a middleware.

A graphical user interface has also built for parameterising the system. It is better to provide a

degree of control to the user to allow him make a wide range of experiments without having

to access the code. The GUI is built with Java Swing and figure 9 illustrates a screenshot:

Figure 9: GUI of ERG Simulator

3.5 Evaluation of the ERG Simulator

It is important the simulator works successfully and produces the expected results. Effort has

been given to satisfy that the simulator calculates correct the metrics and it is robust.

The first phase of the evaluation is simple mathematical calculated metrics for comparison

with the results of the simulator. For example, we want to show that the total messages that

Gnutella produces in the simulator are the same with the value expected. We can calculate the

number of messages for a network with 500 nodes, 3 neighbours per node, TTL=3 and 100

generated queries as:

390039*100)333(*100* 321

1

==++== ∑
=

TTL

i

Neighb
i

QueriesERG NNM Messages

Model Simulation

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 65

In the simulator, if we run the experiment (without cutting the circles) we get the following

results:

• Total average messages: 3950.

• Query Success: 45 %.

We have generated 100 queries and we got at least 45 query hits. This means that the

simulator works correctly and the 3950 messages is an expected value.

The same concept is followed for other metrics as well. In load balancing, calculations of

average query rates and standard deviation have been very useful for checking the

underload/overload thresholds and verifing the correctness of the outputs.

As a last evaluation action, effort has been given to form experiments similar to other work

for comparison of the results. Some experiments, oriented to query success have taken place

in comparison with Oeztunali, Rusitschka, and Southall (2006), and under different network

parameters the query success is almost the same with the ERG simulator.

This secure and robust simulation environment can be used for the load balancing

experiments and can provide reliable results.

Results and Discussion

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 66

4. RESULTS AND DISCUSSION

Evaluation of the proposed load balancing model is done through various experiments, each

one focuses on different aspects, examination and analysis of the model. The results are

illustrated in different sections, each one describing and analyzing the findings. Before this,

the different scenarios and data inputs in the simulator are discussed.

4.1 Experimental Environment

For presenting the results, two basic simulation environments were chosen. More were used

during experimentations, but it is believed that these two represent in the best way the final

results and outline the success of the proposed models.

The first environment is a realistic and average condition of the network. The

parameterisation of the system is according to figure 10:

Figure 10: The main simulation environment with the parameters

Results and Discussion

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 67

A high number of nodes have been used, 3000 in total. More nodes are supported but for

faster response, this value is reasonable and good for the experiments in question. The number

of virtual servers is selected arbitrarily to be the 10% of the total nodes in the network. TTL=3

can deteriorate query success and we want to see any potential improvements with the

proposed models. The TTL for load balancing has been set to five. It can be considered quite

a high value, however; the purpose is to exploit the dynamics of the model by eliminating the

probabilities of the failures that are described in section 2.2.5. A highly loaded environment

with 5000 queries per iteration has been formed. The queries are generated randomly and this

satisfies, with high probability, that all the nodes will generate at least one query. It was

preferred in these experiments not to put another dynamic in out network with enabled

downloading. First, it is reasonable to examine the success of the models in an environment

with standard resources. There is also no need to enable circles.

One of the greatest challenges in creating the experimental environment was the set up of the

thresholds. The way that the thresholds has been chosen follows the logic of the average

query rate per node and the standard deviation of all the query rates in all the nodes in the

network. When the pure Gnutella runs, this value can be accessed and provides an indication

of how to challenge the models. For the input data the average query rate per node has been

calculated approximately 65 and the standard deviation approximately 37. The overload

threshold is set to 100, near the average, plus the standard deviation of the queries. The losses

mode threshold is arbitrarily set to 130. 30 units are left for enabling the system to load

balance itself before starts losing messages.

In the second experimental environment all the data has been kept the same except the

thresholds. An environment that probabilistically loses messages was created. The number of

these messages is large. The load for both loss mode and underload thresholds is reduced

(fewer available underloaded nodes in the network). Figure 11 illustrates the second

environment:

Results and Discussion

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 68

Figure 11: The second simulation environment with the parameters

The results of the metrics, that are illustrated in the next subsections, include the following

(for pure, VSS and VSD simulations):

• Load profiles of the nodes in the network (simulated in the 1
st
 environment).

• Extra traffic in the network by the load balancing models (simulated in the 1
st

environment).

• Standard deviation of the query rate in all the nodes of the network (simulated in the

1
st
 environment).

• Number of processes by the overloaded and the virtual server during load balancing

(simulated in the 1
st
 environment).

• System availability (simulated in the 1
st
 environment).

• Query success (simulated in the 2
nd
 environment).

• Number of discarded messages (simulated in the 2
nd
 environment).

Results and Discussion

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 69

4.2 Load Profiles of Nodes in the Network

Initially, it is interesting to examine the loading profiles of the nodes in the network. This

means how many nodes are balanced in pure Gnutella and how many after the load balancing.

Furthermore, showing the number of nodes which are in the overload and loss mode. Figures

12, 13 and 14 illustrate the results for pure Gnutella and the two proposed models:

Figure 12: Load profiles of nodes for pure Gnutella

0

500

1000

1500

2000

2500

3000

N
u
m
b
e
r
o
f
N
o
d
e
s

1 2 3 4 5 6 7 8 9 10

Number of Iteration

Load Profiles of Nodes in the Network (PURE)

UNDERLOADED

BALANCED

OVERLOADED

FOR LOSSES

Results and Discussion

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 70

Figure 13: Load profiles of nodes in VSS load balancing model

Figure 14: Load profiles of nodes in VSD load balancing model

As it can be noticed from the above figures, there is a significant improvement. More

specifically, the number of overloaded and loss mode nodes has been eliminated and it

approaches values near to zero. In addition, the number of underloaded nodes has been

reduced by more than 50%, which reveals a better exploitation of the system resources.

0

500

1000

1500

2000

2500

3000
N
u
m
b
e
r
o
f
N
o
d
e
s

1 2 3 4 5 6 7 8 9 10

Number of Iteration

Load Profiles of Nodes in the Network (VSS)

UNDERLOADED

BALANCED

OVERLOADED

FOR LOSSES

0

500

1000

1500

2000

2500

3000

N
u
m
b
e
r
o
f
N
o
d
e
s

1 2 3 4 5 6 7 8 9 10

Number of Iteration

Load Profiles of Nodes in the Network (VSD)

UNDERLOADED

BALANCED

OVERLOADED

FOR LOSSES

Results and Discussion

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 71

Furthermore, the number of balanced nodes has been increased significantly from 60% to

83% approximately.

Comparing the two models, there is no significant difference in results. The only comment

could be that VSS evolves slightly faster. Evolve means reaching the optimum performance.

4.3 Standard Deviation of Query Success in Nodes

Previous results show that the number of balanced nodes has increased significantly. What

has happened is that the standard deviation of query success in nodes has decreased and it is

more difficult for the query success to extend the overload thresholds. It is clear that the

standard deviation is closer to average query success and figure 15 illustrates the results and

the comparisons between the pure Gnutella and the two load balancing models:

Figure 15: Standard deviation of query success in nodes of the network

Standard Deviation of Queries per Iteration in all the nodes

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10

Number of Iteration

S
ta
n
d
a
rd
 D
e
v
ia
ti
o
n

Standard Deviation (PURE)

Standard Deviation (VSS)

Standard Deviation (VSD)

Results and Discussion

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 72

4.4 Traffic of Load Balancing

It is obvious from the previous experiment that that there is a significant improvement. The

important question now is what the cost for this improvement is. Cost is the number of

messages that are introduced in the system. Figure 15 illustrates the results for the same

simulation environment:

Figure 16: Extra traffic introduced by load balancing

There is something very interesting in these results. Although the system appears to retain its

successful balance that has been achieved by the models, the cost for retaining this balance is

reduced exponentially. This means that the system finds a state that does not need to apply

load balancing, a state of balance (not load balance but functional balance imposed by the

proposed models).

Comparing the two variations, it seems that they consume almost the same number of

messages. It was mentioned in the previous subsection that VSS seems to evolve faster and

this faster evolution can explain the slightly increased number of messages compared to VSD.

Number of Load Balancing Messages

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 3 4 5 6 7 8 9 10

Number of Iteration

N
u
m
b
e
r
o
f
M
e
s
s
a
g
e
s

LB MESSAGES VSS

LB MESSAGES VSD

Results and Discussion

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 73

4.5 System Availability

In section 2.6, the system availability is defined. System availability provides a global

quantified indication of the improvement by load balancing scheme. Figure 16 illustrates the

results:

Figure 17: System availability in pure Gnutella and in load balancing versions

The figure reveals that the load balancing provides a significantly improved robust system,

with over a 30% increase in system availability. The two variations approach almost the same

availability.

4.6 Workload of Virtual Servers and Overloaded Nodes in the two

Models

It has been mentioned that the two load balancing models follow a different strategy to reach

the same result. The differentiation is based on which entity undertakes the workload of the

load balancing. Examining the workload of the overloaded node and the virtual server, it can

be analysed if there are risks for virtual servers to fall in overload state due to the load

balancing scheme or if this extra workload can not be supported by the overloaded node.

0

10

20

30

40

50

60

70

80

90

100

%
 A
v
a
il
a
b
il
it
y

1 2 3 4 5 6 7 8 9 10

Number of Iteration

System Availability

System Availability (PURE)

System Availability (VSS)

System Availability (VSD)

Results and Discussion

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 74

When workload is mentioned, it incorporates not only the messages but the number of

processing tasks. Although it is difficult to define the discrete tasks of the nodes, some

proportions of workload between virtual servers and overloaded nodes, in the two variations,

can be proposed.

The following tasks are defined for the two models:

• VSS (3/5 ratio):

o Virtual Server: 1(ULN)+2(VSS_RFH)= 3 workload units.

o Overloaded Node: 1(VSS_RFH)+2(VSS_RTOL)+2(VSS_CTOL)= 5

workload units.

• VSD (5/2 ratio):

o Virtual Server: 1(ULN)+4(VSD_RFH)= 5 workload units.

o Overloaded Node: 1(VSD_RFH)+1(VSD_RTOL)= 2 workload units.

It is important that the counting of tasks and processes is not precise and there is not an exact

quantum unit of workload. For example, scanning a list is not always one unit, because the

workload of this task may vary according to the size of list, how the list has been

implemented, if it is cached and other factors which can affect the quantification. However,

most importantly are the ratios, which it is believed, represent the real ratios in the proposed

models.

In the simulation, the workload is calculated according to the above definitions. Figure 17

illustrates the results of the two models:

Results and Discussion

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 75

Figure 18: Workload of virtual servers and overloaded nodes in the two load balancing

models

Results show that the two models behave differently. The workload in the two entities in VSS

does not differ significantly. It is quite the same and it becomes equal rapidly. However; in

VSD the workload is uneven. Virtual servers manage most of this and overloaded nodes are

quite flexible. Their workload is significantly less than both entities in the VSS model.

Furthermore, it seems that the mean value of the workload in the two entities in VSD is the

same value of the two entities in VSS (the two lines of VSS are between the two lines of

VSD).

The two variations have a powerful combination for establishing dynamically. For example,

starting with VSS and if the overloaded nodes can not respond to the load balancing

workload, the system can switch to VSD which reduces the workload of overloaded and

increases respectively for the virtual server. Then, if virtual servers reach their capacity limits,

the system can switch back to VSS.

4.7 Query Success

It is obvious that if there are discarded queries in the network, the query success may be

affected because some queries may not reach potential resources. This is related with the TTL

Overloaded Nodes & Virtual Servers Extra Workload

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

1 2 3 4 5 6 7 8 9 10

Number of Iteration

N
u
m
b
e
r
o
f
P
ro
c
e
s
s
e
s
 P
e
r
It
e
ra
ti
o
n OL PROCCESSES PER ITERATION (VSS)

VS PROCCESSES PER ITERATION (VSS)

OL PROCCESSES PER ITERATION (VSD)

VS PROCCESSES PER ITERATION (VSD)

Results and Discussion

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 76

value, the number of neighbours in each node and the thresholds for losses. Investigating the

query success with the second experimental simulation environment provided the results of

the following figure:

Figure 19: Query success for the two variations and pure Gnutella

The results reveal that there is an improvement in query success. The lost messages reduce the

number of query hits. The difference is not high because the flooding technique generates

many messages and a query can reach a node from many paths. It is believed that the

improvement would be more significant in other searching techniques (random walkers). It

must also be added that, in the simulation level, only queries are discarded and not query hits

(the focus is in queries).

4.8 Discarded Messages

Most of the experiments conducted under different conditions show one simple thing. In most

cases, there are no discarded messages. This means that if the thresholds follow the standard

deviation concept, there is optimum success without discarded messages compared to pure

Gnutella which appears to have lost messages.

Query Success in two models and comparison with pure Gnutella

0

5

10

15

20

25

30

35

40

45

50

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Number of Iterations

Q
u
e
ry
 S
u
c
c
e
s
s
 (
%
)

QUERY SUCCESS (PURE)

QUERY SUCCESS (VSS)

QUERY SUCCESS (VSD)

Results and Discussion

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 77

However, the second simulation environment is extreme, with nodes that can not process the

5000 queries per iteration. It is a very challenging environment for examining how the load

balancing behaves in this extreme condition. Figure 20 illustrates the results:

Figure 20: Discarded messages in pure Gnutella and in the two load balancing models

We notice that the system has a perfect performance. However, it can not support so many

messages, thus it starts losing messages exponentially until a point where it finds a balance

and it loses a constant number of messages. The interesting fact is, this number is much less

than the number of discarded messages in Gnutella. The system shows a property of

resistance in this extreme environment and it succeeds its purpose.

Another interesting thing has been that this experiment needed 100 iterations in order for the

system behaviour to be clear.

Discarded Messages in two models and comparison with pure

Gnutella

0

2000

4000

6000

8000

10000

12000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Number of Iteration

N
u
m
b
e
r
o
f
D
is
c
a
rd
e
d
 M
e
s
s
a
g
e
s

DISCARDED MESSAGES (PURE)

DISCARDED MESSAGES (VSS)

DISCARDED MESSAGES (VSD)

Conclusions and Future Work

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 78

5. CONCLUSIONS AND FUTURE WORK

5.1 Conclusions and Evaluation towards Autonomic P2P Computing

This work proposed two load balancing models for Gnutella 0.4 network. Gnutella network

suffers from high numbers of queries and it seems that nodes may become unable to process

and forward the messages. The proposed load balancing scheme focuses on this side of the

Gnutella load. The idea is based on some logical movements of the nodes that cause the

overload to nodes that are regarded underloaded. This logical movement is supported by

virtual servers, peers with a role to manage the load balancing actions.

The proposed models and results show a significant overall improvement. Gnutella network is

more robust with the VSS and VSD load balancing. The number of discarded messages is

reduced, the query success is affected positively and the load profiles of the nodes reveal

increased number of balanced nodes. The most important fact of these improvements is that

the load balancing messages (cost) is reduced. Lastly, there is a global improvement in the

system due to the significant increase in system availability. The system appears a property of

adaptivity and operational balance.

As far as the comparison of the two variations is concerned, they seem to behave similarly.

The difference is the workload distribution between the virtual servers and the overloaded

nodes. VSS has a closer workload between virtual servers – overloaded nodes. VSD reduces

the workload in overloaded nodes but increases it significantly in the virtual servers. The

system could take advantage of this fact and establish a dynamic switching model between the

two variations regarding the load condition of virtual servers and overloaded nodes.

In section 1.4.3, criteria of self-organisation are defined and the analysis of Gnutella self-

organisation is outlined. It is interesting to discuss the changes in self-organisation dynamics

that have been introduced by the load balancing model. Table 21 below compares pure

Gnutella and Glutella with load balancing according to the self-organisation criteria.

Conclusions and Future Work

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 79

Table 21: Self-Organisation profile of pure Gnutella and Gnutella with load balancing

Self-organisation Criteria Pure Gnutella
Gnutella with Load

Balancing

Boundaries No No

Reproduction No Yes

Mutability No Yes

Organisation No No

Metrics Partial Yes

Adaptivity No Yes

Feedback No Yes

Reduction of Complexity Yes Yes

Randomness No No

Self-Organised Criticality No Partial

Emergence Yes Yes

Boundaries remain unspecified. The load balancing model does not introduce control to

points where nodes can enter the system.

Load balancing introduces a degree of reproduction and mutability. The structure is

influenced and also the relationships. The logical movements that the model proposes affect

the relations and the connections of peers. It also affects the number of relations. For example,

an overloaded node after load balancing has fewer relationships (fewer nodes send queries to

this node).

Organisation is not affected by load balancing. The concept of Gnutella organisation remains

the same.

Metrics have been extended because the system can detect perturbations caused by

overloading. This additional property benefits Gnutella and for this reason full conformance is

attributed to Gnutella (it is not completely full because the model does not cover all types of

perturbations, but in order we depict the improvement, full conformance in attributed).

Gnutella with load balancing is regarded more adaptive on the grounds that overloading

perturbations are faced. The system is adaptive to the extra load in nodes caused by queries.

Conclusions and Future Work

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 80

Furthermore, load balancing systems provide feedback to Gnutella network. The feedback is

both positive and negative. Positive when underloaded nodes advertise themselves to virtual

servers. This positive feedback indicates resource discovery. The negative feedback is from

the overloaded nodes which ask for help from virtual servers. The system takes actions for

this negative feedback and tries to balance the load of nodes. The feedback in both cases is in

the form of messages.

Self-organised criticality partially exists in the system due to load balancing. More

specifically, the actions of balancing have a global effect to the system. The number of

messages is reduced exponentially, although the system continues to remain balance. This

critical point reveals a degree of self-organised criticality.

Emergence by load balancing can be noticed when query success and standard deviation is

examined in the extreme experimental simulation environment described in the previous

section. Calculations show that the standard deviation is reduced although the number of

queries remains the same.

Overall, the Gnutella network with load balancing show improved characteristics of self-

organisation. Towards autonomic computing, the models support the idea by having partial

self-healing attributes, self-configuration and self-optimization. However, it can not be

regarded an autonomic computing system because it focuses only on load balancing. The

system can receive perturbations by a wide range of other factors. The most important fact is

that a single model for load balancing affects positively the effort of more than one “self-

actions”.

5.2 Future Work

Results give motivation for further work and exploitation of model dynamics. The following

subsections illustrate some interesting future focus on this work:

Conclusions and Future Work

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 81

5.2.1 More Advanced and Heterogeneous Simulations

More advanced simulation can provide more reliable results within different simulation

environments. For example, the load thresholds are the same for all the nodes, something that

is not realistic but experimentally accepted. Virtual server is expected to have more load

capacity and the load in nodes can result from different statistical distributions. The same

concept can be applied to queries generations. Instead of random generation, each peer could

send a query with a probability, which can be calculated through different statistical

distributions. This also concerns the files, the number of neighbours and other parameters of

the network.

There are also other assumptions that can be omitted. Lost messages, node arrivals and

leavings, latency and more. The more functionality supported, the better and more reliable

results can be generated.

5.2.2 Detailed Study and Dynamic Utilization of the Load Balancing

Variations

The results showed that the two variations have both, advantages and disadvantages. A further

study, with better definitions of the processes and the ratios of the workload of virtual servers

and overloaded nodes is required. This can provide a dynamic establishment of both

variations which can make virtual servers and overloaded nodes more robust.

5.2.3 Build of a more Advanced and Generic Simulator

A better simulator can provide a more powerful environment for experiments. Section 5.2.1

mentions some improvements that can be incorporated in the simulator. In general, a generic

simulator, with options for creating various networks with various searching techniques and

methods - which attribute to the networks a range of information - can be a flexible and

powerful research tool.

Conclusions and Future Work

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 82

3-D visualisation is also under construction and can be a special element for network

management in P2P networks.

5.2.4 Study and Development of the Role of Virtual Servers

There is one question that must be answered in this work; what is the number of virtual

servers that can provide the best results? Does this number vary during the network changes?

It is certain that it must vary. It is believed that the design of a model that could create

dynamically virtual servers, according to the network state, is the idea that can complete this

work. More research is needed and detailed studies of the behaviour of virtual servers.

5.2.5 Development of a Prototype for Real Testing and Evaluation

As the research is evolved, the findings must be confirmed through a prototype which will test

the model in reality. A P2P client for file sharing can be a first prototype for extracting the

final results of the model.

References

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 83

REFERENCES

(2000) The Gnutella Protocol Specification v0.4 , Document Revision 1.2. Available:

http://www9.limewire.com/developer/gnutella_protocol_0.4.pdf [Accessed: August 01,

2007].

Klingberg, T. and Manfredi, R., (2002) Gnutella Protocol Specification v0.6. Available:

http://rfc-gnutella.sourceforge.net/src/rfc-0_6-draft.html [Accessed: August 01, 2007].

Ripeanu, M., (2001) ‘Peer-to-Peer Architecture Case Study: Gnutella Network’ in

Proceedings of the First International Conference on Peer-to-Peer Computing, IEEE.

Ritter, J., (2001) Why Gnutella can't scale. No, really. Available:

http://www.darkridge.com/~jpr5/doc/gnutella.html [Accessed: August 01, 2007].

Zeinalipour, D., (2002) Exploiting the Security Weaknesses of the Gnutella Protocol.

Available: http://www.cs.ucr.edu/~csyiazti/courses/cs260-2/project/html/index.html

[Accessed: August 01, 2007].

Fan, R. and Chung, K., (1997) ‘Spectral graph theory’, Regional conference series in

mathematics,. Published for the Conference Board of the mathematical sciences by the

American Mathematical Society, Providence, R.I., no. 92.

Fan, R. and Chung, K., (1994) ‘26 cm’, CBMS Conference on Recent Advances in Spectral

Graph Theory held at California State University at Fresno, 6-1, T.p. verso.

Ripeanu, M., (2001) ‘Peer-to-Peer Architecture Case Study: Gnutella Network’, University of

Chicago Technical Report.

Adamic, L., Lukose, R., Puniyani, A. and Huberman, B., (2001) ‘Search in power-law

networks’, Phys. Rev. E 64, 046135.

Aiello, W., Chung, F. and Lu, L., (2000) ‘A random graph model for massive graphs’ in

Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, ACM Press, pp.

171–180.

References

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 84

Lu, Q., Cao, P., Cohen, E., Li, K. and Shenker, S., (2000) ‘Search and replication in

unstructured peer-to-peer networks’ in Proceedings of the 16th international conference on

Supercomputing, ACM Press, pp. 84–95.

Azzouna, N. and Guillemin, F., (2004) ‘Experimental analysis of the impact of peer-to-peer

applications on traffic in commercial IP network’ in European transactions on

Telecommunications: Special issue on P2P networking and P2P services, ETT, 15/6:511 –

522

Steinmentz, R. and Wehrle, K., (2004), ‘Peer-to-Peer Networking & Computing’ in

Informatic-Spektrum, Springer, Heidelberg, 27(1):51-54.

Napster web site. Available: http://www.napster.com/ [Accessed: August 01, 2007].

Balakrishman, H., Kaashoek, M., Krger, D., Morris, R. and Stoica, I., (2003) ‘Looking up

Data in P2P Systems’, Communication of the ACM, 46(2).

Rowstron, A. and Druschel, P., (2001) ‘Pastry: Scalable, Distributed Object Location and

Routing for Large-Scale Peer-to-Peer Systems’ in IFIP/ACM International Conference on

Distributed Systems Platforms (Middleware), pp.329-350, Heidelberg, Germany, Springer.

Ratnasamy, S., Francis, P., Handley, M., Karp, R. and Shenker, S., (2001) ‘A Scalable

Content-Addresable Network’ in SIGCOMM, pp. 161-172, ACM Press.

Stoica, I., Morris, R., Karger, D., Kaashoek, M. F. and Balakrishnan, H., (2001) ‘Chord: A

Scalable Lookup Peer-to-Peer Service for Internet Applications’ in Proceedings of the 2001

ACM SIGCOMM Conference.

Watts, D. J. and Strogatz, S. H., (1998) ‘Collective dynamics of ‘small world’ networks’ in

Nature, 393(6684):440-442.

Barabasi, A. L. and Albert, R., (1999) ‘Emergence of Scaling in Random Networks’ in

Science, 286:509-512.

Rivest, R., (1992) ‘The MD5 Message-Digest Algorithm’ in RFC, 1321.

References

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 85

Singla, A. and Rohrs, C., (2002) ‘Ultrapeers; another step towards Gnutella scalability’ in

Gnutella developer forum.

Tamassia, R., Goodrich, M. T., Vismara, L., and Handy, M., (2005) An Overview of JDSL

2.0, the Data Structures Library in Java. Available:

http://www.jdsl.org/other_modules/overview/overview.pdf [Accessed: August 01, 2007].

Aristotle, (1957) ‘Metaphysica’ in W. Jaeger, editor, Metaphysica, Oxford University Press.

Bar-Yam, Y., (1997) ‘Dynamics of Complex Systems’, Westview Press.

Maturana, H. R. and Varela, F. J. (1980) ‘Autopoiesis and Cognition: The Realization of the

Living’ in D. Reidel, Dordrecht, Holland.

Steinmetz, R. and Wehrle, K., (2005) Peer-to-Peer Systems and Applications. Springer-

Verlag Berlin Heidelberg.

Karger, D. R. and Ruhl, M., (2006) ‘Simple Efficient Load Balancing Algorithms for Peer-to-

Peer Systems’, Springer, New York.

Godfrey, B., Lakshminarayanan, K., Surana, S., Karp, R. and Stoica, I., (2006) ‘Load

Balancing in Dynamic Structured P2P Systems’ in Elsevier Science.

Zhu, Y. and Hu, H., (2005) ‘Efficient, Proximity-Aware Load Balancing for Structured P2P

Systems’ in IEEE Transactions on Parallel and Distributed Systems.

Bienkowski, M., Korzeniowski, M. and Heide, F.M. auf der, (2005) ‘Dynamic Load

Balancing in Distributed Hash Tables’ in Springer, Berlin.

Aberer, K. Datta, A. and Hauswirth, M., (2005) ‘Multifaceted Simultaneous Load Balancing

in DHT-Based P2P Systems: A New Game with Old Balls and Bins’ in Springer.

Exarchakos, G., Salter, J. and Antonopoulos, N., (2006) ‘Semantic Cooperation and Node

Sharing among P2P Networks’ in Proc. of 6
th
 International Network Conference, , pp. 11-19,

Plymouth.

References

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 86

Suri, S., Toth, C. D. and Zhou, Y., (2004) ‘Uncoordinated Load Balancing and Congestion

Games in P2P Systems’ in Springer, Verlag.

Papadimitriou, C. H., (2001) ‘Algorithms, Games, and the Internet’ in Proceedings of the

thirty-third annual ACM Symposium on Theory of Computing.

Uchida, M., Ohnishi, K., Ichikawa, K., Tsuru, M. and Oie, Y., (2006) ‘Dynamic Storage Load

Balancing with Analogy to Thermal Diffusion for P2P File Sharing’ in proceedings of

Interdisciplinary Systems Approach in Performance Evaluation and Design of Computer and

Communication Systems.

Eichhorn, D., (2006) NATaWare Java Framework. Available:

http://sourceforge.net/projects/nataware [Accessed: August 01, 2007].

IBM, (2001) Autonomic Computing from IBM. Available:

http://www.research.ibm.com/autonomic/overview/solution.html, [Accessed: August 01,

2007].

Definition of Autonomic Computing. Available:

http://www.webopedia.com/TERM/A/autonomic_computing.html [Accessed: August 01,

2007].

Kephart, J. O. and Chess, D. M. (2003) The Vision of Autonomic Computing. Available:

www.research.ibm.com/autonomic/research/papers/AC_Vision_Computer_Jan_2003.pdf

[Accessed: August 01, 2007].

Sterritt, R. and Hinchey, M. (2005) ‘Autonomic Computing. Panacea or Poppycock?.

Available: http://ieeexplore.ieee.org/iel5/9677/30561/01409959.pdf [Accessed: August 01,

2007].

Li, Z. J. and Liao, M. H., (2005) ‘Modelling Load Balancing in Heterogeneous P2P Systems’

in Science Publications.

Pournaras, E., (2007) ‘V-Agents: Software Agents for Resources Discovery in Unstructured

P2P Networks’ in Master Coursework for “Software Agents” module, Internet Computing

Course, University of Surrey.

References

Evangelos Pournaras, MSc in Internet Computing, University of Surrey, August 2007 87

Ting, N. S. and Deters, R. (2003) ‘3LS – A peer-to-peer Network Simulator’ in Proceeding of

the 3
rd
 International Conference on Peer-to-Peer Computing

Almaer, D., (2004) Another Java-C++ Benchmarking. Available:

http://www.theserverside.com/news/thread.tss?thread_id=26634 [Accessed: August 01,

2007].

Oeztunali, S., Rusitschka, S. and Southall, A. (2006) ‘MULTILAYER GNUTELLA: P2P

Resource Sharing with an Efficient Flexible Multi-Keyword Search Facility’ in TechRepublic

