Adaptive Agent-based Selforganization for Robust Hierarchical Topologies

International Conference on Adaptive and Intelligent Systems

Evangelos Pournaras, Martijn Warnier, Frances M.T. Brazier

Motivation

Hierarchical topologies

Tree structures

Aggregation

Decisionmaking

> Search

Information dissemination

Simple in principle

Motivation (cont.)

Distributed systems and tree overlays

Node / link failures

Congestions

Attacks

Heterogeneity

Sensitive in principle

Problem

Robustness

Minimization of the impact of failures in the topology

Self-organization

Nodes with local knowledge in dynamic environments

Application-dependence

Abstract application to self-organization requirements

Propose

AETOS

The Adaptive Epidemic Tree Overlay Service

Approach

Application requirements abstraction

Target topology

Optimization problem:

Sort nodes according to their robustness and max # of children

Architecture

Agent knowledge

3 type of views

Random View Myopic View Tree View

Information flow

Tree Management

Myopic View Reconfigurations

Downgrade reconfiguration (rejection, removal)

Agent picks candidates with lower robustness than the ones it tried before

Example

Message Overhead

Conclusions & Future Work

- Building & maintaining hierarchical structures in distributed environments is challenging
- Importance: Robustness, self-organization, applicationindependence
- 3-layer architecture:
 - Bottom: randomness->proactive robustness
 - Middle: proximity->reconfigurable knowledge
 - > Top: connectivity->reactivity
- Further large-scale experimentation in dynamic settings, e.g. changing rank values
- Test in different applications, e.g. energy management, application-level multicast

Questions?

