Adaptive Agent-based Self-organization for Robust Hierarchical Topologies

Evangelos Pournaras Martijn Warnier Frances M.T. Brazier
Intelligent Interactive Distributed Systems*
VU University, Amsterdam
The Netherlands
{E.Pournaras,M.Warnier, FMT.Brazier}@few.vu.nl

Abstract

Virtual organizations in large-scale distributed environ-
ments can organize their communication in a hierarchical
topology (i.e., trees). However, such topologies can be un-
reliable as local failures have a global impact in the organi-
zation. Hierarchical topologies need to adapt continuously
to changes of the underlying environment. Pro-active and
re-active self-organization can make such topologies highly
robust.

This paper proposes AETOS, the Adaptive Epidemic Tree
Overlay Service. AETOS is a new agent-based approach
for building and maintaining on-demand robust tree topolo-
gies that structure communication. Agents are pro-actively
(self)-organized appropriately in a tree to minimize the ef-
fect of failures. In addition, they re-actively rewire their
connections to reflect changes in the environment. The self-
organization model, the control of the system and an illus-
trative example are discussed in this paper.

1 Introduction

Hierarchical virtual topologies that define the communi-
cation structures over unreliable large-scale distributed in-
frastructures, require robustness. These topologies can be
used in a wide range of applications [5, 9, 13, 14, 15].
Robustness refers to the fact that the hierarchical topology
must be dynamic, adaptive, reconfigurable and finally self-
organized to (i) handle the changes of the underlying dis-
tributed environment and (ii) reflect the application require-
ments.

Software agents have been proposed as a paradigm
for management of distributed systems [12]. Self-
healing of hierarchical structures [3] and agent-based self-
organization [16] appear in various approaches of dis-
tributed self-management.

*Affiliated with Delft University of Technology from the Ist of
September 2009

Adaptive central control of hierarchical topologies for
communication is not always an option nor a scalable solu-
tion. This is especially the case in the aforementioned large-
scale distributed environments. Building and maintaining
robust hierarchical topologies in a distributed manner is the
challenge this paper addresses. Local intelligent software
agents play a central role in acquiring a global hierarchi-
cal topology using their ability to cooperate, adapt [4] and
reconfigure. Local agent behavior can make the topology
self-organizing.

This paper focuses on tree topologies as an instance of
hierarchical structures. In trees, local failures have a global
impact in the topology as the removal of a node disconnects
the branches underneath from the main body of the tree.
Creating self-organized tree topologies that are resilient to
failures requires: (i) to pro-actively organize (sort) agents
over the tree in such a way that a potential failure has min-
imum impact on the tree structure, (ii) to re-actively adapt
to changes in the environment by reconnecting, in case of
failures, or rewiring connections to improve the robustness
of the topology.

These are the two main concepts of AETOS, the Adaptive
Epidemic Tree Overlay Service. AETOS is the mechanism
that this paper proposes to build and maintain robust tree
topologies in distributed environments. It is based on a 3-
layer architecture as the core of self-organization. These
three layers are facilitated and managed by a local software
agent, the AETOS agent. Applications can be build on top
of this agent-based dynamic tree overlay. The interaction
between the AETOS agent and the application is managed
through another local agent, the AETOS proxy. This agent
provides the tree overlay on-demand to the application, and
is responsible for bootstrapping and terminating the self-
organization process.

The contribution of this work is three-fold. This paper
proposes the following:

1. The myopic competitive agent model, a highly recon-
figurable self-organization model. It enables the use of
dynamic proximity criteria. This model is inspired by

the conceptually similar Topology MANagement pro-
tocol (T-MAN [6]) that uses static proximity criteria.
Section 4 discusses this model.

2. The AETOS agent that realizes the self-organization
behavior of the node participating in the tree topology.
Section 5.1 outlines the core of the AETOS agent.

3. The AETOS proxy that enables the applications to
use tree overlays on-demand. Section 5.2 illustrates
how the AETOS service interacts with the application
through this proxy.

AETOS can provide robust tree topologies independent
of the application type. This generic approach allows more
flexibility for exploring and using hierarchical topologies
in different application types compared to the related work
illustrated in Section 3.

2 Motivation and Problem Overview

Structure and robustness are difficult properties to
achieve in large-scale distributed systems. This section out-
lines how hierarchical topologies can benefit an application.
It also reveals how hierarchical topologies are affected glob-
ally by local failures.

2.1 Application Examples

The coordination of energy consumption among thermo-
statically controlled appliances, illustrated in [14], is a rep-
resentative example of a resource allocation problem based
on a hierarchical topology and software agents. In this sys-
tem, local agents aggregate information about their energy
utilization and reason about it over the hierarchical topology
towards satisfying the global goal of the system, that is the
stabilization of the total energy consumed in the network.

Hierarchical topologies also appear in peer-to-peer sys-
tems in which super-peers are placed at a higher level due
to their additional duties or privileges they have. For ex-
ample, in [13], peers with a high performance profile are
responsible for performing dynamic load-balancing in an
overloaded network. These ‘virtual servers’ are intercon-
nected and forward the load-balancing requests between
themselves until they satisfy each request. This layer cre-
ates another level in the hierarchy, in a similar manner to
the Gnutella II peer-to-peer network.

Hierarchies can also be useful for other types of appli-
cations, such as video streaming [15], security [9] and dis-
tributed databases [5]. The main challenge in using hierar-
chical topologies is how the uncertainties of distributed en-
vironments influence the topology and the application that
uses it. The robustness and the maintenance of these topolo-
gies enables the effective utilization by the applications.

2.2 Failures and Robustness

This paper focuses on virtual tree topologies that are
built on an underlying network infrastructure. In this paper,
these virtual topologies are referred to as overlay networks.
The nodes in the overlay can be controlled by one or more
software agents, i.e., the nodes are the local environment of
the agents. This paper examines how the failures of nodes
influence the tree overlay and how the local software agents
can cooperate to make the topology robust to failures.

Failures can occur in any deployed system. In this paper,
a failure is defined as an abstract state in which the overlay
communication of a node is interrupted. The interruption
refers to the fact that a node (and its agents) in this state
cannot reach and cannot be reached by other nodes. It is
an abstract condition because it can be caused by a wide
range of reasons, such as disconnections in the underlying
network, firewalls, security attacks etc. A tree overlay is ro-
bust if it is capable of retaining its structure under the effect
of failures.

The main problem of trees is that if a node fails, the
branch under the failed node disconnects from the main
body of the tree. Only a few failures can be enough to turn
the structured environment in an unstructured one. This pa-
per approaches the problem of minimizing the influence that
individual failures cause to the whole tree structure. The
main goal of the AETOS service is to guarantee that fail-
ures have a minimum global impact on the tree overlay.
This means that disconnected branches should contain as
few nodes as possible.

3 Related Work

Related work focuses on (i) hierarchical self-healing
frameworks based on agents and (ii) peer-to-peer self-
organization of robust tree overlays.

Hierarchical agent-based approaches provide a multi-
level local control, recovery and healing in distributed sys-
tems. The hierarchical framework proposed by [10], in-
cludes a number of hierarchical control algorithms to main-
tain Quality of Service (QoS) and Service Level Agree-
ments (SLAs), and mechanisms for tuning, load-balancing
and provisioning. In another hierarchical autonomic man-
agement system for grid applications [1], autonomic man-
agers are controlled by software agents and reason about
the overall system behavior. The orchestrating managers
are organized in a hierarchy and pursue their goals using
QoS contracts. The AHITAC model [9] is based on a hi-
erarchical, 3-layer architecture for intrusion tolerance. The
‘executing’, ‘tolerance’ and ‘evaluation’ layers achieve self-
recovery and self-optimization on object networks that fi-
nally become more stable and tolerant.

The above methods incorporate the notion of adaptation
as re-active behavior and not as pro-active. It is unclear
how these methods can be applied in scalable distributed
environments and in different types of applications.

As far as robust tree overlays are concerned, video
streaming applications build and maintain the topology
based on various performance metrics as outlined in [11,
15, 17]. For example, in [15], the broadcast tree is built
based on the bandwidth and the up-time of the participating
nodes. These two metrics lead to two different versions of
a tree, one bandwidth-ordered and one time-ordered. The
proposed algorithm performs some shifting operations that
combine these two versions to a minimum-depth broadcast
tree overlay. However, the algorithm does not consider the
optimum number of children that each node should retain
for controlling the processing cost.

Furthermore, some of the existing work has investigated
the support of the tree overlay by another underlying over-
lay that facilitates the hierarchy and supports the dynamic
states of the nodes. mTreebone [17] is based on stable nodes
that are self-organized through an auxiliary mesh overlay.
This mechanism considers the bandwidth of the nodes that
perform video multicast. However, it only utilizes stable
nodes, excluding others from the system. Similarly, in [5],
the tree overlay is based on skip graphs and is able to per-
form complex range queries over multidimensional data.
This approach requires additional complex mechanisms for
load-balancing and healing.

Some slightly different approaches are based on epi-
demic protocols. For example, TAG [11] builds a robust
tree overlay with low delay. An integrated pull gossiping
protocol performs switching among multiple paths to im-
prove the bandwidth utilization. Finally, the Plumtree [8]
overlay combines eager and lazy push gossiping strategies
to build a dynamic tree. However, the fault tolerance and
tree repair is not part of the main construction protocol, thus
manual repair actions are performed in these approaches.

The main gap that this paper identifies in almost all of
the illustrated approaches is the lack of a generic mecha-
nism that could optimize a tree overlay for any type of ap-
plication. For tree overlays, the related approaches do not
manage to keep the self-organization process independent
of the application requirements.

However, three main critical characteristics are identified
in the illustrated approaches:

1. The utilization of local performance and robustness
metrics that are related to the application, e.g. band-
width, delay, time, availability etc.

2. The underlying support of other overlays, e.g. mesh
overlays, skip graphs.

3. Protocols that exhibit high robustness in dynamic en-
vironments, e.g. gossiping protocols.

AETOS is based on the three above characteristics for
cost-effective building and maintenance of robust tree over-
lays.

4 The Myopic Competitive Agent Model

The AETOS service is facilitated by an agent with the
following knowledge: the robustness r, the random view
R, the myopic view M and the tree view T .

The robustness 7 is attributed and defined by the appli-
cation and may represent metrics such as availability, band-
width, reputation etc. It is used as a ranking scheme for the
robustness of the nodes. Robustness values are assumed to
be independent among the agents, an assumption that holds
in various distributed systems such as the Overnet peer-to-
peer system [2]. Furthermore, the robustness r may be re-
lated to more than one metric. In this case, either a function
combines different metrics to one or they are weighted ac-
cording to the requirements of the application [15].

The random view R is the primary neighboring list. It
contains a number of other random agents from the dis-
tributed environment. Based on the random view, the my-
opic and the tree view are formed.

The myopic view M of an agent expresses the proximity
of an agent to its neighbors. It is filled by selecting neigh-
boring agents with the lower robustness distance d from the
agent’s local robustness r. For example, the robustness dis-
tance between an agent « and an agent y is d = |ry — ry|.
The search space of an agent that is used to fill the myopic
view is the random view. Close proximity agents can also
exchange neighbors (gossip) and further discover each other
faster.

The tree view T is a list with the parent-children neigh-
bors of an agent. Similarly, the search space of an agent to
fill the tree view is the myopic view.

The aforementioned views are dynamic and neighbors
can change over time. The length of the random view de-
pends on the protocol that selects the random neighbors.
For example, the Peer Sampling Service [7], discussed in
Section 5.1, defines the length of the view equals to 20-30
in large-scale environments. The myopic view can have any
length in the range 0 — | R|. Its length varies during the run-
time as it is dynamic and reconfigurable. The myopic view
reconfiguration is illustrated in Section 4.2. The length of
the tree view is n + 1, with n the number of children that
the local AETOS agent retains.

An agents in AETOS is competitive. This means that
it aims to continuously improve its position in the tree by
choosing to connect with more robust agents. This compet-
itive behavior leads an agent to reconfigure its myopic view
M by changing the proximity criteria. The next subsections
illustrate the role of the myopic view and the reconfigura-
tions performed.

4.1 Myopic Agent View

An AETOS agent must find its parent and its children
from its myopic view that expresses the proximity with
other agents in the environment. For this reason, the my-
opic view M of an agent is split in two parts, the sorted
set of candidate parents P and the sorted set of candidate
children C' such that M = P U C'. Agents with higher ro-
bustness 7 than a local agent belong to the set of candidate
parents and agents with lower values belong to the set of
candidate children.

Furthermore, each agent in the tree, excluding the leaves,
is assumed to have a number of children n. The ratio of the
length of the candidate children set over the length of candi-

date parents set (‘I%I) is proportional to the number of chil-

dren n. For example, if |[M| = 12 and n = 3 then |C| =9
and |P| = 3. This guarantees that the search space for
children and the parent is proportional. Figure 1 illustrates
how the myopic view is formed from the random view and
how it is split and sorted in the two sets of candidate tree
neighbors.

Random View

Myopic View I

Candidate Children |Candidate Parents
1

Local Robt;stness r=58

Figure 1. The process of filling and sorting
the myopic view with the appropriate agent
neighbors. The two bold curved arrows illus-
trate that the local agent by default chooses
the more robust candidates.

Finally, a locally competitive agent selects the candidates
with the highest values from the candidate parents and chil-
dren respectively. The two bold curved arrows in Figure 1
depict this selection of the more robust candidates.

4.2 Myopic View Reconfigurations

The proposed myopic competitive agent model has a ma-
jor drawback. The myopic view is filled based on the prox-
imity criteria of robustness. However the myopic view is
a partial list, thus it does not necessarily contain the final
best neighbors. This is a scenario that can appear easily as
the values r of all of the agents may not follow a uniform

distribution. Note that the length of the views is assumed to
be equal for all the agents. For this reason, AETOS updates
the proximity criteria dynamically until the best neighbors
are found. The myopic view must converge to the tree view,
thus the clustering of agents must be dynamic.

The idea of introducing dynamic proximity criteria is re-
alized by reconfiguring and adapting the myopic view. In
other words, the myopic view is reconfigured by including
or excluding areas.

The ranges of robustness values for candidate parents
and children are examined below. All of the indexes re-
fer to the robustness values in the myopic view. A po-
tential parent p belongs to the candidate parents range P
such that p € P = [Pmin,Pmaz)- Similarly, the poten-
tial children ¢; < ¢ < ... < ¢,, with n the number of
children, point to the candidate children range C' such that
{c1,¢2,..sen} € C = [Cmin, Cmaz)- Figure 2a illustrates
the initial ranges of candidate neighboring sets. The agents
perform the following reconfigurations:

(a) i €6 Gy " p -
c;l'lil'l i i i cmaxi pmin i pmla)(
E C ? P :
Z M i
® s :
5 G rP PPy Py tl
Cr'nin i cv"rlani pmin i pmiln i
i > —3
5 C | P
© ! :
Crmin~Li Crmax~1 EI' Pmax1 i
: Cinin I‘:max’ Pmin : pm‘x
! c ' P |

Figure 2. The parent and children candidates
in the myopic view. (a) initial myopic view, (b)
after an upgrade reconfiguration, (c) after a
downgrade reconfiguration.

1. Initial Configuration: the agent with the higher ro-
bustness r in each candidate set is the potential child
or parent respectively. In this case p = p;q. and
C; = Cmaz, for the ith potential child. The two bold
curved arrows in Figure 1 illustrate the concept of the
initial configuration.

2. Upgrade Reconfiguration: the agent has already
found a parent or its children and it seeks to connect

with more robust agents (competitive behavior). In
order to achieve this, it binds the starting point of its
view to the robustness values of the selected agents
and fills the view with more robust agents. The can-
didate parents range is reconfigured as P = [p+1,p+
Pmaz — Pmin + 1] and the children candidate range as
C = [e1 + 1, ¢maz)- Figure 2b depicts the upgrade
reconfiguration.

3. Downgrade Reconfiguration: if a previously selected
candidate agent has rejected the connection (see Sec-
tion 4.3), the view is updated with less robust agents.
In this case, the candidate ranges are updated as P =
[pmin y Pmax — 1] and C' = [Cmin - 17 Cmax — 1] respec-
tively. Figure 2c illustrates how the view is updated in
this case. Note that, the downgrade reconfiguration is
performed step-by-step, decrementing the positions by
one for every rejected parent or child connection re-
spectively.

Agents have the option to switch from a downgrade or
upgrade configuration back to the initial one. Furthermore,
the view of an agent can be a result of both an upgrade and
a downgrade reconfiguration. Any applied reconfiguration
keeps the length of the view equal or lower than the initial
maximum length.

4.3 Triggering the Reconfigurations

The random and myopic views create link overlays that
are unidirectional. However, the tree overlay requires bidi-
rectional links, thus the tree views must be consistent with
respect to the fact that the neighbors should be mutually ac-
ceptable. For this reason, agents exchange four basic mes-
sages based on which: (i) they configure their tree views,
and (ii) the myopic view reconfigurations are triggered.

The four exchanged messages are (i) the request of a par-
ent or child connection, (ii) the acknowledgment of a re-
quest, (iii) the rejection of a request and (iv) the removal of
a parent or child connection.

In their active state, AETOS agents send a number of
parent and child requests to the agent selected from the my-
opic view. The passive state of the agents defines the appro-
priate reactions to the messages received. The local AETOS
agent reacts to a parent or child request as follows:

1. It checks if the metrics of the two communicating
agents are consistent. This means that the value of the
parent should be higher than the value of the child. If
inconsistencies occur due to changes in the values of
robustness, the local agent sends a rejection message to
the requesting agent with information about the value
of local robustness.

2. If there are no inconsistencies, the local agent either

(a) updates and inserts the agent that sent the paren-
t/child request in its tree view. In this case, the
requested agent replies with an acknowledgment.
If the update of the tree view is performed by re-
placing an existing agent with a better one, then
a removal message is sent to the agent to be re-
placed. Or,

(b) it rejects the request and a rejection message is
sent. In this case, the existing parent or children
agents are more robust than the one that sent the
request.

In both cases the reply-messages contain information
that reflects the more recent values of the robustness
metric.

3. The myopic view is potentially adapted by an upgrade
reconfiguration.

If the local agent receives an acknowledgment of its request
it performs:

1. an update of its tree view by inserting the new neigh-
bor. If the update is a replacement, it sends a removal
messages to the replaced agent.

2. an upgrade reconfiguration in the myopic view.

The rejection message triggers the following:

1. a downgrade reconfiguration of the myopic view.
Finally, the removal message is treated similarly to a rejec-
tion and thus the agent performs:

1. removal of the parent or one of the children.

2. a reverse to the initial configuration of the myopic

view.

3. a downgrade reconfiguration in the myopic view.

These messages form the basic interactions among the
agents to configure and maintain the tree overlay links.

5 Architecture and System Control

This section outlines the design of the myopic competi-
tive agent model. It is realized in a 3-layer architecture on
which the AETOS agent is based. It also discusses how
the AETOS service can be bootstrapped and terminated in
a distributed environment.

5.1 Architecture

The myopic competitive agent model illustrated in Sec-
tion 4 is based on three concepts: (i) the random view, that
is, the local search space of the agent, (ii) the myopic view
reconfigurations that enable self-organization based on dy-
namic proximity criteria and (iii) the final establishment of

[Application]

Robust Tree Overlay
- - mm mm mm ms ms g e = = == = N
'/ AETOS Agent I \
| [ATOM] |
| |
I Connectivity Options ' l View Reconfiguration |
| |
| ARMOS |
| t Random Search Space 1
| |

Figure 3. The building and maintenance ar-
chitecture of a robust tree overlay.

the tree overlay links and triggering of the myopic view re-
configurations. The AETOS service incorporates these con-
cepts in a 3-layer architecture outlined in Figure 3.

The bottom layer is the Peer Sampling Service [7]. It
provides the random view to AETOS. The Peer Sampling
Service is a gossiping framework that maintains a highly
connected dynamic topology. In addition, it gradually re-
moves the disconnected nodes from views of the agents and
it can also reflect potential changes in the robustness values
r of the agents.

The middle layer is ARMOS, A Rank-based Middleware
Overlay Service. ARMOS clusters the agents similarly to
T-MAN [6]. However, it uses dynamic and not static prox-
imity criteria as outlined in Section 4.2. In the case of AE-
TOS, the proximity corresponds to the robustness distance
d. ARMOS is a realization of the myopic view reconfigura-
tions that the myopic competitive agent model introduces.

The top-layer of AETOS is ATOM, the Adaptive Tree
Overlay Management layer. ATOM manages the establish-
ment of the tree overlay links from the connectivity options
that ARMOS provides. It also triggers the myopic view re-
configurations in the ARMOS layer. Section 4.3 illustrates
the role of ATOM.

Finally, the AETOS agent facilitates and manages these
three layers. All come together to provide robust tree over-
lays to the applications on-demand.

5.2 Bootstrapping and Termination

The process of building and maintaining tree overlays is
controlled by the application on-demand. This means that
the local application instance decides if AETOS should cre-
ate a new tree overlay or improve an existing one. Creating
and improving tree overlays are the services provided by
AETOS to one or more applications.

Controlling a tree overlay requires global knowledge of

the topology. For example, AETOS should know when to
stop the tree self-organization process upon completion or
to improve the topology if nodes have been inserted or de-
parted from the system. For this reason, bootstrapping and
terminating AETOS in a distributed manner is challenging.

This paper proposes a fully distributed bootstrapping and
termination scheme that is based on a local entity, the AE-
TOS proxy. This proxy is an agent that (i) initializes the self-
organization process, upon request by the local application
instance, with the local application requirements, (ii) moni-
tors if the local application requirements have been satisfied
and (iii) ferminates the self-organization process and allows
AETOS to provide the tree overlay to the application. Fig-
ure 4 illustrates the AETOS proxy and how the application
interacts locally with the AETOS service.

[Application]

Tree Overlay
Request

update(view, metric, n, QoS)

build(metric, n, QoS)

Tree View

Metric Info
Extraction

Initialization and Monitoring I

AETOS Service }\

[Underlying Network]

Figure 4. The AETOS proxy and the applica-
tion interaction with the AETOS service.

At first, the AETOS proxy receives the requests from
the application instances together with their requirements
and initializes the participation of the local AETOS agent
in the self-organization process. The application require-
ments concern the robustness metric, based on which AE-
TOS sorts the nodes over the tree overlay, and the number
of children n that the local application instance can support.
There are also some QoS requirements. These include the
trade-off between how fast the tree overlay is expected by
the application and how optimized (robust) the tree overlay
actually is.

In the next step, the proxy monitors this process. When
all of the requirements have been fulfilled and there are no
changes in the parent-children connections for a given pe-
riod of time, the AETOS proxy assumes that the system has
converged. This period of time is application specific and is
determined by the QoS requirements mentioned above.

At the moment of convergence the proxy, (i) stops par-
ticipation of the agent in the self-organization process by
locking the existing parent-children connections and (ii) en-
ables the AETOS service to provide the tree view to the ap-

plication. Given an improve request, the proxy unlocks the
connections and re-enables the participation of the agent in
the self-organization process.

This termination approach is similar to the approach pro-
posed in T-MAN [6]. However, in our approach, the ap-
plication is the one that defines, through its requirements,
when the self-organization terminates rather than the under-
lying AETOS system. The motivation for this decision is
that the stability of the tree overlay is evaluated with re-
spect to the application requirements and thus the applica-
tion must be the one that calls or stops the service.

6 Example

As an illustrative example, measurements have been per-
formed in a small-scale environment of 10 agents that are
organized in a robust tree overlay with n = 2, i.e., each
agent has two children. The agents receive random values
in the range 0-100. Each of these local values is the ro-
bustness value r of the agent. The agent also retains the
random view R, the myopic view |M| = 6 with |P| = 2
and |C| = 4 and the tree view T.

AETOS runs in discrete rounds. In every round: (i) the
Peer Sampling Service protocol updates the random view,
(il) ARMOS updates the myopic view by applying the ap-
propriate view reconfigurations as well, and (iii) one parent
and two children requests are sent.

After each round, the connectivity and the order of the
agents over the tree are evaluated. The simulation reveals
that a fully connected tree is built at the end of the first
round. As the view reconfigurations are performed, the
agents tend to find the appropriate neighbors. Finally, the
system converges to the required hierarchy in the 5th round.
Between rounds 2-4, agents in the lower levels of the tree
change positions until they find the appropriate neighbors.

“=ATOM <“#ARMOS PSS
50

45

40 \
35
30

25

20 T
15
10

5

Figure 5. Communication overhead for each
layer in the architecture of Figure 3.

of Messages

One important aspect of AETOS is its communication
overhead. Figure 5 illustrates the number of messages

caused within each layer during the convergence runtime.
The Peer Sampling Service is responsible for retaining the
connectivity of the overlay, thus it works independently
from the other two layers. For this reason, its communica-
tion overhead is constant at 20 messages per round (2 mes-
sages x 10 agents = 20 total messages).

In contrast, the two upper layers converge. ARMOS is a
similar gossiping protocol with the same message complex-
ity as the Peer Sampling Service and thus in the first round it
also starts with the 20 generated messages. As the views are
reconfigured and the agents find the appropriate neighbors
the myopic views converge to empty ones.

Similarly, the ATOM layer continuously sends requests
until it finds a better candidate in the myopic view. Consec-
utive upgrade and downgrade reconfigurations restrict the
view and decrease the probability for finding better neigh-
bors. For this reason, ATOM also converges.

“+=ACK “REQ(Par) “#REQ(Chi) REJ REM
18
16
14 \
12
n
S 10
©
a8
[
2 6
s
e 4
2 _ —
0 —a :

Round

Figure 6. Communication overhead for each
type of message in the ATOM layer.

The communication cost of configuring the tree connec-
tions has been evaluated. Figure 6 illustrates the number
of messages per type in the ATOM layer. The ratio of the
children requests over the parent requests appears propor-
tional to the number of children per agent. Furthermore, in
the first round, there are many acknowledgments and a sig-
nificant number of removals but they both converge to the
minimum number as the system converges.

Although definite conclusions cannot be reached by this
small-scale example, they do provide a positive indication
and motivation to further perform large-scale simulations in
future work.

7 Conclusions and Future Work

This paper shows that local adaptive and reconfigurable
agents can cooperate towards self-organizing themselves in
robust hierarchical topologies using AETOS, the Adaptive
Epidemic Tree Overlay Service. AETOS builds and main-
tains robust tree overlays on-demand. It is based on the

AETOS agent that facilitates the myopic competitive agent
model. This paper also introduces the AETOS proxy that
enables the application to bootstrap and terminate the AE-
TOS service.

In contrast to the related work illustrated in Section 3,
AETOS is able to build and maintain robust tree overlays
for different application types. AETOS also facilitates the
three main characteristics identified in the related work in
a generic and effective manner: (i) an abstract robustness
metric provided by the application. It can represent one or
more possibly conflicting performance metrics. (ii) An un-
derlying support by a proximity-based overlay (ARMOS)
and a random overlay (Peer Sampling Service). (iii) Dy-
namic robust protocols. The Peer Sampling Service retains
the connectivity in the lowest level of AETOS in case of
failures and ARMOS uses dynamic proximity criteria.

The illustrative example of Section 6 provides a promis-
ing positive indication for the effectiveness of AETOS. Fur-
ther experimentation in large-scale networks has to confirm
this. The quality of the tree overlays will be evaluated in
certain application types, such as the agent-based energy
utilization discussed in [14].

Acknowledgments

This project is supported by the NLnet Foundation
http://www.nlnet.nl.

References

[1] M. Aldinucci, M. Danelutto, and P. Kilpatrick. To-
wards hierarchical management of autonomic compo-
nents: a case study. In Proc. of Intl. Euromicro PDP
2009: Parallel Distributed and network-based Pro-
cessing, Weimar, Germany, Feb. 2009. IEEE.

[2] R. Bhagwan, S. Savage, and G. M. Voelker. Under-
standing Availability. In IPTPS, pages 256-267, 2003.

[3] J. A. Chaudhry and S. Park. Ahsen - autonomic
healing-based self management engine for network
management in hybrid networks. In GPC, pages 193—
203, 2007.

[4] K. S. Decker and K. Sycara. Intelligent adaptive in-
formation agents. J. Intell. Inf. Syst., 9(3):239-260,
1997.

[5] A. Gonzélez-Beltran, P. Milligan, and P. Sage. Range
queries over skip tree graphs. Comput. Commun.,
31(2):358-374, 2008.

[6] M. Jelasity, A. Montresor, and O. Babaoglu. T-Man:
Gossip-based fast overlay topology construction. El-
sevier Computer Networks, 2009. To appear.

[71 M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Ker-
marrec, and M. van Steen. Gossip-based peer sam-
pling. ACM Trans. Comput. Syst., 25(3):8, 2007.

[8] J. Leitao, J. Pereira, and L. Rodrigues. Epidemic
Broadcast Trees. In SRDS ’07: Proceedings of the
26th IEEE International Symposium on Reliable Dis-
tributed Systems, pages 301-310, Washington, DC,
USA, 2007. IEEE Computer Society.

[9] B. Li, H. Wang, and G. Feng. Adaptive Hierarchical
Intrusion Tolerant Model Based on Autonomic Com-
puting. Security Technology, International Conference
on, 0:137-141, 2008.

[10] M. Litoiu, M. Woodside, and T. Zheng. Hierarchical
model-based autonomic control of software systems.
SIGSOFT Softw. Eng. Notes, 30(4):1-7, 2005.

[11] J. Liu and M. Zhou. Tree-assisted gossiping for
overlay video distribution. Multimedia Tools Appl.,
29(3):211-232, 2006.

[12] R. P. Lopes and J. L. Oliveira. Software agents in net-
work management. In ICEIS, pages 674—-681, 1999.

[13] E. Pournaras, G. Exarchakos, and N. Antonopou-
los. Load-driven neighbourhood reconfiguration

of Gnutella overlay. Computer Communications,
31(13):3030-3039, 2008.

[14] E. Pournaras, M. Warnier, and F. M. T. Brazier. A
Distributed Agent-based Approach to Stabilization of
Global Resource Utilization. In Proceedings of Inter-
national Conference of Complex Intelligent and Soft-
ware Intensive Systems (CISIS’09), March 2009.

[15] G. Tan, S. A. Jarvis, X. Chen, and D. P. Spooner. Per-
formance Analysis and Improvement of Overlay Con-
struction for Peer-to-Peer Live Streaming. Simulation,
82(2):93-106, 2006.

[16] H. Tianfield and R. Unland. Towards self-organization
in multi-agent systems and grid computing. Multia-
gent Grid Syst., 1(2):89-95, 2005.

[17] F. Wang, Y. Xiong, and J. Liu. mTreebone: A Hybrid
Tree/Mesh Overlay for Application-Layer Live Video
Multicast. In ICDCS 07: Proceedings of the 27th
International Conference on Distributed Computing
Systems, page 49, Washington, DC, USA, 2007. IEEE
Computer Society.

