Dynamic Composition and Reconfiguration of Internet-scale Control Systems

Evangelos Pournaras, Mark Yao and Ron Ambrosio

Introduction – Control Systems

Power grid: power plants, transmission lines, consumer devices

➤ **Transportation systems**: traffic lights, automated vehicles

Introduction – Control Systems (Cont.)

Control systems emerge to large and distributed business ecosystems

- A 5-year US project of \$178 millions
- Model and control in different levels
- Renewables, reliability, consumers flexibility
- 60000 metered customers

Problem Overview

Static composition and reconfiguration of Internet-scale control systems

Load-balancing?

Fault-tolerance?

Domain-expert developer

 $\begin{bmatrix} i_1 & 0_1 & 0_2 \\ \vdots & i_2 & \text{algorithms} & \vdots \\ \vdots & i_n & 0_n \end{bmatrix}$

Application-integrator

System administrator

Automation?

Scaling?

Problem Overview

Static composition and reconfiguration of Internet-scale control systems

Gap: Offline approach in dynamic distributed systems

Domain-expert development deve

Host C

5th IEEE International Conference on Digital Ecosystems and Technologies

Research Question

How can Internet-scale control systems be composed and reconfigured dynamically during runtime?

Key Components

Discovery

Search for possible I/Os of online control elements

Decision-making

Select I/Os of control elements based on application criteria

Configuration

Setup local and remote I/O information routing

Distributed middleware

Distributed middleware

5th IEEE International Conference on Digital Ecosystems and Technologies

Approach

A model of dynamic composition and reconfiguration in distributed control applications designed as a distributed control application!

No need to reinvent the wheel

The Binding Control Model

Application element

Binding control element

Model Granularity

System-level

Node-level

Element-level

Applicability

IBM software infrastructure & core demonstration project technology

Lightweight – Java Mobile Edition (JME)

Publish-subscribe system

Internet-scale Control System - iCS

Synchronous & asynchronous remote middleware communication

Multiple network adapters

XML files: binding map & network map

Applicability (Cont.)

Scenario: Update the binding map without the network map

Discovery sensor: gossiping protocol

Decision controller: Fitness function or administrative rules

Reconfiguration actuator: Adapt the publish-subscribe system

Conclusions

- Distributed control systems emerge to highly complex ecosystems
- Composition and reconfiguration as a control application
- We can do more than changing or introducing a middleware
- Higher abstraction, integration and applicability
- Bridging the gap between developers
- New business opportunities and models

Future Work

Quantitative comparison of different granularity levels in iCS

Evaluation of more complex composition and reconfiguration scenarios

Questions?

