
Dynamic Composition and Reconfiguration of
Internet-scale Control Systems
Evangelos Pournaras

Faculty of Technology, Policy and Management
Delft University of Technology

2628 BX, Delft, The Netherlands
Email: e.pournaras@tudelft.nl

Mark Yao
and Ron Ambrosio

IBM T.J. Watson Research Center
Yorktown Heights, NY 10598, USA
Email: {markyao,rfa}@us.ibm.com

Abstract—The runtime and life-cycle of distributed cyber-
physical ecosystems is highly unpredictable and challenging to
manage. A large number of spatially located control elements
organize distributed control systems. These systems require dy-
namic interactions of their control elements during their runtime
and life-cycle to tolerate failures, balance their computational
load, scale and meet application requirements. This paper ad-
dresses the problem of dynamic composition and reconfiguration
of these dynamic interactions in Internet-scale control systems.
Rather than introducing a new middleware or mechanism with a
limited applicability and integration in such systems, this paper
introduces the ‘binding control model’ designed as a control
system for higher abstraction, integration and applicability in
distributed control systems. The binding control model, its
possible granularity levels and its applicability are illustrated
in this paper.

I. INTRODUCTION

Distributed control systems and their applications emerge to
highly complex, large-scale cyber-physical ecosystems. Appli-
cation domains of distributed control, such as electrical power
systems, transportation systems and water resource manage-
ment, are built by spatially distributed and interconnected con-
trol elements. Such operational environments appear complex
dynamics and multiple uncertainties, e.g. network failures,
network delays and security attacks. Control elements need
to become more autonomous, loosely coupled and self-aware
of their cyber-physical ecosystem to self-compose themselves
into robust control systems that meet complex application
requirements.

This challenge can be met when the interactions and
information flow in control systems are reconfigured and
composed in a dynamic fashion during their lifetime. Dynamic
composition and reconfiguration refers to how a control system
of control elements distributed across a network is able to
scale in number and evolve during runtime by modifying
and self-organizing the binding scheme of its elements. This
binding scheme is defined as the logical input and output
connections/wirings between these control elements and forms
the application graph of a distributed control system.

This paper identifies a gap when control systems and
their applications are modeled, designed and deployed in
Internet-scale distributed environments. Existing composition
and reconfiguration approaches in distributed control systems

are out of the scope of a control system itself and left
for system composers or external dedicated systems for this
purpose [3], [8], [21]. This separation of control systems and
their applications from tools and systems to compose them
under-emphasizes the importance of dynamic composition and
reconfiguration within distributed cyber-physical ecosystems
and results in (i) an offline static composition [5] and (ii) hard
integration of control applications in these environments [16].

To bridge this gap, the binding control model is introduced
in this paper for managing the input and output information
exchange within distributed control systems. This model is
designed as a control system to allow a higher flexibility and
integration in the runtime environments of control applications.
This model is based on (i) information discovery, (ii) decision-
making and finally (iii) reconfiguration of the information
exchanged within distributed control systems.

The contributions of this paper are outlined as follows:
• The introduction and design of the binding control model

as a control system for the dynamic composition and
reconfiguration of information flow in distributed control
applications (Section III).

• The introduction of three possible granularity levels for
the instantiation of the binding control model in large-
scale distributed environments (Section IV).

• The illustration of an actual applicability and integration
of the binding control model in the Internet-scale Control
System (iCS), a distributed embedded control platform
used extensively in critical application domains such as
the energy domain [1] (Section V).

The technical aspects and benefits of the binding control
model are illustrated in detail in this paper.

II. PROBLEM STATEMENT

This paper focuses on the problem of dynamic composi-
tion and reconfiguration of applications in distributed control
systems.

A distributed control system consists of spatially distributed
control elements that exchange signals over a communication
network, e.g. the Internet. A control element is an embed-
ded device, a piece of software or a cyber-physical system
that has the role of a sensor, a controller or an actuator.
A sensor monitors a device, or another piece of software



and generates output signals based on sensing information.
Controllers process input and generate output signals based
on an application algorithm. Actuators receive input signals
and undertake actions, e.g. turning on or off the thermostat of
a device. In a distributed control system, these elements can
be designed to remotely exchange signals and coordinate their
objectives to enable distributed control applications in a wide
range of cyber-physical domains: electrical power systems,
transportation systems and water resource management.

This paper refers to the composition and configuration
of distributed control applications as the logical software
bindings (wirings) of input and output (I/O) information sig-
nals between spatially distributed software control elements.
More specifically, the composition refers to the design of the
application graph to enable a complex application logic, that
is the selection of I/O bindings between control elements.
The configuration is the supporting mechanism to instantiate
and manage these bindings. Note that this paper specifically
focuses on the composition of the logical bindings between
control elements and is distinguished from the composition of
the actual elements addressed in related work [2].

Most of the existing applications of distributed control are
composed before their actual deployment and runtime. Their
configuration is usually part of their initialization [5] and not
their runtime. This can degrade their robustness tremendously.
Uncertainties of distributed systems such as failures, delays
and security attacks can interrupt the I/O signals between
control elements of an application. Dynamic composition
and reconfiguration organizes the bindings between control
elements on-the-fly by removing, adding and moving bindings
among online control elements. Dynamic binding can provide
a wide range of new possibilities for a distributed control
application to evolve as illustrated in the following examples:

• Fault-tolerance by routing I/Os to alternative and avail-
able control elements in case some of them are discon-
nected.

• Information discovery by updating the I/Os bindings to
capture new information from different control elements.

• Load-balancing by rebinding input signals from an over-
loaded control element to an underloaded one.

• Integration and scalability by adding and connecting
new control elements to an existing cluster of control
elements.

Existing approaches [6], [8], [16] are usually centralized
based on single management components or administration
tools. Such approaches are not scalable and require a large
amount of monitoring and state information that is not always
available among enterprise environments. In some cases [21],
solutions are realized out of the scope of control systems based
on agent-based paradigms. This paper proposes a binding
control model for dynamic composition and reconfiguration of
applications in distributed control systems. The modeling of
dynamic composition and reconfiguration as an actual control
system is the design challenge that this paper tackles.

III. THE BINDING CONTROL MODEL

This paper introduces the binding control model for the
composition and reconfiguration of I/O bindings in distributed
control systems. Note that, this model is designed and can be
instantiated as a control system. Therefore, it allows a higher
level of abstraction, integration and applicability in the area of
distributed control systems. Figure 1 illustrates the introduced
binding control model.

Figure 1. The binding control model for managing I/O bindings in distributed
control systems

This model assumes a communication network and a system
for storing and managing the I/O binding information of an
application. Note that an application is a group of control
elements whose I/O bindings are required to be dynami-
cally composed and reconfigured. The communication network
supports remote calls and communication protocols serving
application control elements as depicted by the dashed lines
of Figure 1. It is the same network communication systems
on which the binding control model is based.

An I/O binding between two control elements of an appli-
cation can be represented as two triples of information: (i) the
input or output identifier respectively of a control element, (ii)
the respective control element identifier and (iii) the identifier
of the physical machine, e.g. the IP address and port number,
that hosts the respective control element. The I/O binding
information system consists of this type of information stored
and managed locally within each instance of the software
platform running application control elements. Such a software
platform can be a virtual machine or a distributed middleware.
An I/O binding information system is based on different com-
munication models [10]. In a peer-to-peer model, I/O bindings
correspond to an one-to-one communication between control
elements. Alternatively, a publish-subscribe model allows a
more loosely coupled binding between control elements. The
communication network is used as an event bus in which
control elements can publish (output) and subscribe (input)
to certain events. Note that, both models can be adopted for



higher flexibility [17], [20]. Section V-B shows an alternative
way to engage both models based on the binding control
model.

The binding control model consists of three control el-
ements: (i) the I/O discovery sensor, (ii) the I/O decision
controller and (iii) the I/O reconfiguration actuator. These
three control elements are binded to each other and are coupled
with the I/O binding information system as depicted by the
solid lines of Figure 1. The control elements of the binding
control model use the I/O binding information system to
manage (i) the bindings of the application control elements
and (ii) the bindings between each other. They act as a control
system sensing and actuating on the I/O binding information
of an application. Therefore, the binding control model can
be instantiated in the same software runtime environment on
which the control elements of an application run.

A. The I/O Discovery Sensor

Dynamic composition and reconfiguration requires the dis-
covery of new information concerning the possible I/Os to
which a control element binds. An input or output of a control
element is a possible bind to an output or input of another
control element respectively if the types of their information
match. For example an integer output matches with an integer
input but a float output does not match with a string input.
Changes in the I/O types are assumed not to occur during
the runtime of a distributed control system. However, control
element may fail and therefore certain I/O types may extinct.
New control elements with new I/O types may be added during
runtime. These more dynamic scenarios are part of future
work.

The actual information discovered by this sensor is the I/O
descriptors. A descriptor is a set of information containing the
I/O triple, that is the identifiers of the I/O, control element and
host. The descriptor may also optionally contain other types of
information related to an application. For example, a descriptor
of an energy provider controller may contain QoS information
related with a type of energy source. A descriptor with the
consumption profile of an end-user device controller may be
used for demand-side management. The information within the
I/O descriptor is critical for the selection and establishment
of I/O bindings. The I/O decision controller handles this
information and its role is discussed in Section III-B.

The actual instantiation of the I/O discovery sensor is a
design and implementation issue related with (i) the available
resources of the network communication system (ii) the appli-
cation and (iii) the software platform on which the application
and the binding control model are developed and deployed.
Different discovery mechanisms and protocols can be engaged,
such as flooding [14], random walks [7], gossiping [13] and
DHT overlays [15]. Section V-B illustrates an instantiation of
the I/O discovery sensor based on gossiping.

B. The I/O Decision Controller

The I/O decision controller selects a number of I/Os to
bind with or unbind from. A list of possible I/O bindings

(descriptors) is provided by the I/O discovery sensor. This is
the input of the I/O decision controller. Based on its decision-
making scheme discussed below, the selected descriptors are
provided to the I/O reconfiguration controller.

Decision-making can be based on (i) an administration
scheme or it can be (ii) autonomous and part of the application
design. Both schemes can be adopted as well under different
situations.

In the first case, the application that requires dynamic bind-
ing is highly critical. Continuous and real time monitoring is
enforced and any failure to meet application requirements may
have catastrophic effects. For example, existing air-controlling
system cannot operate in a fully automated fashion. The
uncertainties of weather, physical environment and mechanical
failures in aircrafts require highly complex control systems that
have not yet been transformed to fully automated ones. Similar
issues concern other application domains that remain, to a cer-
tain degree, controlled by system operators and administrators.
The I/O decision controller allows administrators to interact
with a binding control system. Rules, commands, or policies
together with constraints and other collected information build
a knowledge representation of the decision-making scheme.
This knowledge representation depends on the application
design and requirements but also on the supported platform
that runs the application. Section V-C illustrates a scenario
of how an administrator uses an I/O decision controller to
manage dynamically bindings of application control elements.
Note that, in the case of an administration scheme, the I/O
discovery sensor is a complementary element supporting this
scheme. The information of the I/O discovery sensor can be
provided, in theory, by an administrator if it is available.

In the second case, decisions are automated and are based
on a scheme designed to serve a specific type or class of
applications. Multi-agent systems, genetic algorithms, self-
organization algorithms and evolutionary optimization are
some examples of such design schemes with autonomous deci-
sions [12], [22]. A common characteristic in these approaches
is the existence of a fitness function that can support the I/O
decision controller in the binding control model. A fitness
function receives as input the I/O descriptors and other local
information related to an application. This function ranks or
sorts the possible I/O bindings according to a criterion, their
fitness, as defined by the application. For example, assume
that the criterion for I/O binding selections is the bandwidth
of the nodes over which the control elements are deployed. The
euclidean distance is a simple evaluation metric to compare the
fitness of I/O bindings. Other or additional criteria related to
the application requirements can be engaged and blended [19]
in the fitness function. Note that, generic fitness functions that
satisfy different applications are challenging to design and are
part of ongoing research [18].

C. The I/O Reconfiguration Actuator

The I/O reconfiguration actuator is the actual element that
adds or removes I/O bindings to or from the control elements
of an application. Actuation concerns the local and remote



calls to the I/O binding information system of the control ele-
ments that are binded or unbinded. The I/O decision controller
provides all the required information facilitated in the I/O
descriptors for reconfiguring the I/O bindings: the identifiers
of the I/Os, control elements and hosts.

In a distributed control system based on a peer-to-peer
communication model, direct connections are established or
dropped between the control elements of an application. If the
control elements are remotely located, the I/O reconfiguration
actuator performs remote calls to realize the binding and
change the information in the remote I/O binding information
system. In a peer-to-peer communication model, both control
elements are affected when a bind is added or removed.

In a publish-subscribe model adopted for communication,
control elements of an application are loosely coupled. I/O
bindings are added and removed by subscribing and unsub-
scribing to certain output events. Therefore, reconfiguration is
required only in the location of control elements that bind
their input. However, the lower lever routing of published
events may also require changes. For example, published
events should not be routed to locations in which there are
not subscribers.

IV. MODEL GRANULARITY

The binding control model can be instantiated at different
granularities. In this paper, granularity refers to the level on
which the binding control model is designed, implemented and
deployed within the environment of a distributed control sys-
tem and its applications. Understanding the different possible
granularity levels is crucial for the general applicability of this
model in decentralized control systems.

This paper discusses three possible granularity levels at
which the binding control model can be instantiated:

• System-level: The binding control system acts as an
external system or service and may possibly have its own
runtime environment. In this case, its design and imple-
mentation is not necessarily related or integrated with
the software design and implementation of the distributed
control application. From the viewpoint of the software
platform that runs the application, the binding control
system is a centralized service. However, the actual
binding control system may be transparently distributed
and deployed in different physical machines as depicted
in Figure 2a.

• Node-level: The binding control system is part of the
software platform and runtime environment that also runs
the distributed control application. This software platform
is installed in multiple nodes with the binding control
model being part of the runtime. In this case, a local
binding control system in every node is responsible for
the dynamic binding of the control elements that run
in this specific node. This means that the I/O binding
information system in every node is sensed and actuated
by an I/O discovery sensor, an I/O decision controller
and an I/O reconfiguration actuator. Therefore, a number
of remotely located binding control systems in different

nodes coordinate their actions to discover, select and
finally reconfigure the I/O bindings of their local control
elements. Figure 2b illustrates the node-level instantiation
of the binding control model.

• Element-level: The binding control system is designed
and developed to serve a specific control element of an
application. In this case, there is a one-to-three elements
relationship, that is, a correspondence of an application
control element to an I/O discovery sensor, an I/O deci-
sion controller and an I/O reconfiguration actuator. This
approach is highly decentralized and provides a higher
flexibility and autonomy for control elements to self-
compose and self-reconfigure their bindings. Figure 2c
illustrates the concept of an element-level instantiation
of the binding control model.

Note that in the node-level and element-level instantiations
of Figure 2, the binding control system appears locally located
with the application control elements whose I/O bindings
manages. This is not necessarily enforced as the binding
control system is also a control system application and it can
be deployed in separate allocated nodes for the purpose of
dynamic binding composition and reconfiguration.

The selection of the most relevant and appropriate granu-
larity level for the model instantiation is a design issue and
depends on multiple factors. The flexibility of the runtime
environment, the API, the type, complexity and requirements
of the application, the available computational and network
resources and the security enforced in each granularity level
by the runtime environment are only some of these factors to
be considered.

V. MODEL APPLICABILITY

This section illustrates the applicability of the binding
control model in cyber-physical embedded systems and specif-
ically in the Internet-scale Control System (iCS) [1]. iCS is a
Java Micro Edition (JME) lightweight runtime environment
for distributed control applications. iCS has been used in
various domains of large-scale control application such as
energy demand-side management in the Olympic Peninsula
GridWise Demonstration Project [9] and is currently the
core communication technology used in the Pacific Northwest
Smart Grid Demonstration Project1.

iCS is based on loosely coupled control elements that are
binded based on the publish-subscribe communication model.
iCS control elements are distributed among iCS nodes that
provide the runtime environment. An iCS node has a local
publish-subscribe system and two proxies for remotely pub-
lishing and subscribing I/Os. Synchronous and asynchronous
communication is supported by allowing control elements of
an application and system administrators to issue manage-
ment commands and exchange messages. The actual network
communication is realized by different transport mechanisms
providing different levels of decentralization and security.
Currently, iCS supports (i) a TCP peer-to-peer communication,

1www.pnwsmartgrid.org



Figure 2. Three possible granularity levels for the instantiation of the binding control model.

(ii) the MQtt broker system [11], (iii) RMI and (iv) the
Harmony overlay network [4]. Figure 3a illustrates a simplified
view of the iCS architecture.

An I/O binding between two control elements locally lo-
cated in an iCS node requires one and only one topic subscrip-
tion of the target (input) control element in the local publish-
subscribe system. In contrast, an I/O binding between two
remotely located control elements requires two subscriptions.
Figure 3b illustrates a simple scenario of an underlying remote
peer-to-peer communication corresponding to a logical binding
between two remote control elements. One topic subscription
is performed by the input control element as in the case of
a local I/O binding. A second subscription of the same topic
is required by the remote subscriber proxy in the publisher’s
side. When this proxy receives an event from the publisher of
the topic to which it is subscribed, it forwards the event to
the remote publisher proxy in the other iCS node where the
subscriber is located using the network adapters. In this way,
iCS maps the logical bindings between control elements to an
actual network communication and routing.

The composition of a control application is a series of

subscriptions performed during an initialization phase. The
iCS runtime reads two types of files, (i) the binding map
and (ii) the network map. The former contains information
about the I/O bindings, that is which I/Os of control elements
are binded. The latter contains information about the physical
location of the iCS nodes and the distribution of control
elements in these nodes. This composition approach is static
and does not allow any reconfiguration and evolution during
runtime as discussed in Section II.

This section illustrates the instantiation and integration of
the binding control model in iCS. The node-level granularity
is chosen for the model instantiation over the element-level
granularity for the reason of reducing the computational and
memory resources in iCS nodes. Introducing fewer control ele-
ments reduces the cache allocation and the number of running
threads in iCS. However, an actual performance comparison
of the three granularity levels in iCS is part of future work.

A. Reconfigurations

Reconfigurations are the first step for the instantiation of
the binding control model. This means that the introduced



Figure 3. The Internet-scale Control System. (a) The local architecture of an iCS node. (b) Remote communication between two remotely binded control
elements.

binding control system should be coupled appropriately with
the underlying mechanism that manages the I/O binding infor-
mation system, in this case, with the publish-subscribe system.
The synchronous command execution mechanism of iCS is
used for this purpose. The I/O reconfiguration actuator, as an
application control element, issues a ‘bind’ command that,
in case of iCS, has the form of bind -/+ {source descriptor}
{target descriptor}. The ‘-’ indicates a removal and the ‘+’
an addition of a binding between the source (output) and
target (input) control elements. The I/O information about
these control elements is contained in the descriptors.

The ‘bind’ command, as any other iCS command, can be
executed remotely in different iCS nodes. Therefore, when this
command is issued, the iCS runtime forwards the command,
transparently from the control elements, to the affected iCS
nodes and waits for the execution result. In case of two
remote control elements, the ‘bind’ command is successful
if and only if the I/Os types match and both subscriptions
(or unsubscriptions) illustrated in Figure 3b are performed
successfully.

The use of the iCS command execution is the only re-
quirement for the management of the publish-subscribe system
by the I/O reconfiguration actuator. Therefore, this integration
approach does not require any changes in the publish-subscribe
system, the remote communication system or the network
adapters.

B. Information Discovery

Binding reconfigurations require knowledge about the de-
scriptors of the control elements. iCS does not support an ex-
plicit lookup mechanism for making this information available.
Therefore, a gossiping discovery mechanism is introduced in
iCS to support the I/O discovery sensor. Gossiping is a self-
organization mechanism that provides a high binding connect-
edness between control elements, preventing the clustering of
the application graph in case of failures in iCS nodes or iCS

control elements. The core idea of gossiping is that a number
of gossiping controllers store and update periodically their
views of other gossiping controllers. A gossiping controller
is a control element and its view is a partial list of descriptors
in the system.

The view of the gossiping controller is sensed by the I/O
discovery sensor for new descriptors of control elements.
The updates in the view and the exact gossiping algorithm
description are based on the peer sampling service [13].
Note that this paper does not focus on the illustration of
the convergence and performance of gossiping protocols but
rather on the integration of gossiping in iCS as a supporting
mechanism of the I/O discovery sensor. Readers are referred
to related work for quantitative results about gossiping [13],
[18].

The principle of gossiping is the continuous push-pull
exchange of views between different gossiping controllers.
Therefore, gossiping controllers change their binding connec-
tions continuously and exchange their views in a peer-to-peer
fashion. The main challenge with the integration of gossiping
in iCS is how to enable a peer-to-peer communication by using
the publish-subscribe system that manages the I/O binding
information.

The gossiping mechanism of iCS takes advantage of the
reconfigurations performed by the binding control system.
Algorithm 1 and 2 illustrate the active and passive threads
respectively of the gossiping controllers. Every time that a
gossiping controller periodically initiates a push-pull gossip
information exchange (line 1, Algorithm 1), it creates a new
binding (line 4, Algorithm 1). The input and output type of this
binding is the gossip that contains three types of information
(line 6, Algorithm 1): (i) a ‘push’ or ‘pull’ flag to distinguish
the inputs received during a gossip exchange (line 3 and
10, Algorithm 2), (ii) the descriptor of the source gossiping
elements that initiates the ‘push’ or ‘pull’ output (line 6, Al-
gorithm 2) and (iii) the view of the source gossiping controller



used by the target gossiping controller to update its local view
(line 13, Algorithm 2). When the two gossiping controllers
are binded, the gossiping initiator can publish its gossip (line
7, Algorithm 1). The subscribed gossiping controller receives
the gossip (line 2, Algorithm 2) and repeats the same process.
Finally, when the gossip exchange is complete, the bindings
between the two gossip controllers are removed (lines 11 and
12, Algorithm 2).

Note that, the selection of gossiping controllers (line 3,
Algorithm 1) and the view update (line 13, Algorithm 2) are
part of the peer sampling service and they do not influence the
integration of gossiping in iCS as a supporting mechanism of
the I/O discovery sensor. These operations are illustrated in
detail in related work [13].

C. Decision-making

An I/O discovery sensor senses the gossiping controller for
new I/O descriptors of application control elements and pro-
vides (outputs) these descriptors to the I/O decision controller.
A simple decision-making scenario is considered in this paper.
An administrator, system operator or application composer is
interested in updating the application graph, that is the binding
between the control elements, without any knowledge about
the actual deployment in the underlying network topology. In
other words, the administrator has only knowledge about the
new binding map of an iCS application and not about the
network map. This binding map is provided as an input in the
I/O decision controller.

The possible descriptors that are published to the I/O
decision controller by the I/O discovery sensor contain the
required network information about the physical location of
each control element. Therefore, this information is not re-
quired to be provided by, for example, an application composer
as it is sensed by the I/O discovery sensor and is made
available to the I/O decision controller. A control element in a
binding map corresponds to a descriptor of this control element
disseminated by the gossiping controllers and discovered by
the I/O discovery sensor. In this way, a local matching check
can be performed by the I/O decision controller: (i) Assume
the set of the existing I/O bindings that are not defined in the
new binding map. Then, the possible descriptors received by
the I/O decision controller that match this subset are sent to
the I/O reconfiguration actuator to perform a binding removal.
In contrast, (ii) assume the set of bindings defined in the
new binding map that are not currently established. Then, the
possible descriptors received by the I/O decision controller that
match this subset are sent to the I/O reconfiguration actuator
to perform a binding addition.

The introduction of more complex decision-making schemes
in the I/O decision controller are part of on-going work. Self-
composition scenarios are specifically considered in which
decisions are driven by the application control elements.

VI. CONCLUSIONS AND FUTURE WORK

This paper addresses the problem of dynamic composition
and reconfiguration in large-scale decentralized control sys-

tems. Rather than introducing a new middleware service or
other dedicated mechanisms for solving this problem, this
paper provides a generic modeling and design solution that
benefits from a higher level of abstraction, integration and
applicability in the area of distributed control systems. The
binding control model is designed as a control system and
is able to be instantiated at different granularity levels. This
flexibility serves the higher applicability of this model in
various embedded control platforms and applications. This
paper actually shows such an applicability in the Internet-scale
Control System (iCS), a distributed embedded control platform
used extensively in critical demonstration projects of electrical
power management [1].

A quantitative evaluation of the benefits of the binding con-
trol model in such demonstration projects and other application
domains is part of ongoing and future work. Performance anal-
ysis is required to clarify and actually compare the relevance
of each granularity level in different application scenarios.

ACKNOWLEDGMENT

The authors would like to thank Martijn Warnier, Frances
M.T. Brazier, Jeff Kephart and Brian Gaucher for their help
to make this collaboration possible.

REFERENCES

[1] R. Ambrosio, A. Morrow, and N. Noecker. e-business control systems.
In Proceedings of the 2nd International Conference on Computing,
Communications, and Control Technologies, pages 91–96, University
of Texas, Austin, TX, 2004. IEEE Computer Society.

[2] C. Angelov and K. Sierszecki. A Component-Based Framework for
Distributed Control Systems. In 32nd EUROMICRO Conference on
Software Engineering and Advanced Applications (EUROMICRO’06),
pages 20–27. IEEE.

[3] P. Bellavista, A. Corradi, R. Montanari, and C. Stefanelli. Dynamic
binding in mobile applications. Internet Computing, IEEE, 7(2):34 –
42, 2003.

[4] P. Dube, N. Halim, K. Karenos, M. Kim, Z. Liu, S. Parthasarathy,
D. Pendarakis, and H. Yang. Harmony: holistic messaging middleware
for event-driven systems. IBM Syst. J., 47:281–287, April 2008.

[5] T. Genß ler and C. Zeidler. Rule-Driven Component Composition for
Embedded Systems. In Intl. Conf. on Software Engineering (ICSE):
Workshop on ComponentBased Software Engineering, 2001.

[6] I. Georgiadis, J. Magee, and J. Kramer. Self-organising software archi-
tectures for distributed systems. In Proceedings of the first workshop on
Self-healing systems - WOSS ’02, page 33, New York, New York, USA,
Nov. 2002. ACM Press.

[7] C. Gkantsidis, M. Mihail, and A. Saberi. Random walks in peer-to-
peer networks: Algorithms and evaluation. Performance Evaluation,
63(3):241 – 263, 2006. P2P Computing Systems.

[8] M. Guler, S. Clements, N. Kejriwal, L. Wills, B. Heck, and G. Vachtse-
vanos. Rapid Prototyping of Transition Management Code for Reconfig-
urable Control Systems. In Proceedings of the 13th IEEE International
Workshop on Rapid System Prototyping (RSP’02), RSP ’02, pages 76–,
Washington, 2002. IEEE Computer Society.

[9] D. Hammerstrom, T. Oliver, R. Melton, and R. Ambrosio. Standardiza-
tion of a hierarchical transactive control system. In Proceedings of the
Grid Interop ’09 Conference, 2009.

[10] B. Heck, L. Wills, and G. Vachtsevanos. Software technology for
implementing reusable, distributed control systems. IEEE Control
Systems Magazine, 23(1):21–35, Feb. 2003.

[11] U. Hunkeler, H. L. Truong, and A. Stanford-Clark. Mqtt-s - a pub-
lish/subscribe protocol for wireless sensor networks. In COMSWARE,
pages 791–798, 2008.

[12] M. Jelasity, A. Montresor, and O. Babaoglu. T-man: Gossip-based fast
overlay topology construction. Computer Networks, 53(13):2321 – 2339,
2009. Gossiping in Distributed Systems.



Algorithm 1 The active thread of the gossip controller.
1. do every T period
2. sourceDescriptor=myDescriptor;
3. targetDescriptor=myView.select();
4. bind + sourceDescriptor targetDescriptor;
5. sourceView=myView;
6. sourceGossip={‘push’,sourceDescriptor,sourceView};
7. publish(sourceGossip);

Algorithm 2 The passive thread of the gossiping controller.
1. do for ever
2. sourceGossip=publishSubscribeSystem.receive();
3. if sourceGossip is ‘push’
4. then sourceDescriptor=myDescriptor;
5. sourceView=myView;
6. targetDescriptor=sourceGossip.sourceDescriptor;
7. targetGossip={‘pull’,sourceDescriptor,sourceView};
8. bind + sourceDescriptor targetDescriptor;
9. publish(targetGossip);
10. if sourceGossip is ‘pull’
11. then bind - sourceDescriptor targetDescriptor;
12. bind - targetDescriptor sourceDescriptor;
13. myView.update(sourceGossip.sourceView);

[13] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. van
Steen. Gossip-based peer sampling. ACM Transactions on Computer
Systems, 25(3):8–es, Aug. 2007.

[14] S. Jiang, L. Guo, and X. Zhang. Lightflood: an efficient flooding scheme
for file search in unstructured peer-to-peer systems. In ICPP, pages 627–
635, 2003.

[15] Y.-J. Joung, C.-T. Fang, and L.-W. Yang. Keyword search in dht-based
peer-to-peer networks. In Proceedings of the 25th IEEE International
Conference on Distributed Computing Systems, ICDCS ’05, pages 339–
348, Washington, DC, USA, 2005. IEEE Computer Society.

[16] J. Kramer and J. Magee. Self-Managed Systems: an Architectural
Challenge. In Future of Software Engineering (FOSE ’07), pages 259–
268. IEEE, May 2007.

[17] P. R. Pietzuch and J. Bacon. Peer-to-peer overlay broker networks in
an event-based middleware. In Proceedings of the 2nd international
workshop on Distributed event-based systems, DEBS ’03, pages 1–8,
New York, NY, USA, 2003. ACM.

[18] E. Pournaras, M. Warnier, and F. M. T. Brazier. Adaptation strategies
for self-management of tree overlay networks. In Proceedings of the
11th IEEE/ACM International Conference on Grid Computing, pages
401–409, 2010.

[19] G. Tan. Performance Analysis and Improvement of Overlay Construction
for Peer-to-Peer Live Streaming. Simulation, 82(2):93–106, 2006.

[20] W. W. Terpstra, S. Behnel, L. Fiege, A. Zeidler, and A. P. Buchmann.
A peer-to-peer approach to content-based publish/subscribe. In Pro-
ceedings of the 2nd international workshop on Distributed event-based
systems, DEBS ’03, pages 1–8, New York, NY, USA, 2003. ACM.

[21] L. Wang, S. Balasubramanian, and D. H. Norrie. Agent-based Intelli-
gent Control System Design For Real-time Distributed Manufacturing
Environments. pages 115–152. In Working Notes of the Agent Based
Manufacturing Workshop, 1998.

[22] W. Zhong, J. Liu, M. Xue, and L. Jiao. A multiagent genetic algorithm
for global numerical optimization. IEEE Transactions on Systems, Man,
and Cybernetics, Part B, 34(2):1128–1141, 2004.


